論文の概要: Semi-supervised Cardiac Image Segmentation via Label Propagation and
Style Transfer
- arxiv url: http://arxiv.org/abs/2012.14785v1
- Date: Tue, 29 Dec 2020 14:57:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-18 20:30:00.443167
- Title: Semi-supervised Cardiac Image Segmentation via Label Propagation and
Style Transfer
- Title(参考訳): ラベル伝播とスタイル伝達による半教師付き心臓画像分割
- Authors: Yao Zhang, Jiawei Yang, Feng Hou, Yang Liu, Yixin Wang, Jiang Tian,
Cheng Zhong, Yang Zhang, and Zhiqiang He
- Abstract要約: 左心室(LV)と右心室(RV)の血液プールを含む心臓構造を分割するためのフルオートマチックな方法を提案する。
具体的には,ラベル伝搬によるmriシーケンス時間枠を利用した半教師付き学習法を考案する。
私達はより強い心臓イメージの区分のための異なった中心およびベンダー間の分散を減らすために様式の移動を利用します。
- 参考スコア(独自算出の注目度): 21.160227706899974
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate segmentation of cardiac structures can assist doctors to diagnose
diseases, and to improve treatment planning, which is highly demanded in the
clinical practice. However, the shortage of annotation and the variance of the
data among different vendors and medical centers restrict the performance of
advanced deep learning methods. In this work, we present a fully automatic
method to segment cardiac structures including the left (LV) and right
ventricle (RV) blood pools, as well as for the left ventricular myocardium
(MYO) in MRI volumes. Specifically, we design a semi-supervised learning method
to leverage unlabelled MRI sequence timeframes by label propagation. Then we
exploit style transfer to reduce the variance among different centers and
vendors for more robust cardiac image segmentation. We evaluate our method in
the M&Ms challenge 7 , ranking 2nd place among 14 competitive teams.
- Abstract(参考訳): 心臓構造の正確なセグメンテーションは、医師が病気を診断するのを手助けし、治療計画の改善に役立てることができる。
しかし、アノテーションの不足と異なるベンダーや医療センター間のデータのばらつきにより、高度な深層学習手法の性能が制限される。
そこで本研究では,左室(lv)と右室(rv)の血流プールを含む心筋構造とmriの左室心筋(myo)を完全自動で区分する方法を提案する。
具体的には,ラベル伝搬によるmriシーケンス時間枠を利用した半教師付き学習法を考案する。
そして、よりロバストな心臓画像分割のために、異なるセンターやベンダー間のばらつきを減らすためにスタイル転送を利用する。
本手法をm&msチャレンジ7で評価し,14チーム中2位にランクした。
関連論文リスト
- A Comprehensive 3-D Framework for Automatic Quantification of Late
Gadolinium Enhanced Cardiac Magnetic Resonance Images [5.947543669357994]
後期ガドリニウム増強(LGE)心筋磁気共鳴(CMR)は、高強度の非生存性心筋を直接可視化することができる。
心臓発作患者に対しては,LGE CMR画像の解析と定量化により適切な治療の決定を容易にすることが重要である。
正確な定量化を実現するためには、LGE CMR画像は心筋の分画と梗塞の分類の2つのステップで処理する必要がある。
論文 参考訳(メタデータ) (2022-05-21T11:54:39Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
フェデレートラーニング(FL)は医用画像解析に広く用いられている。
FLのパフォーマンスは、多発性硬化症(MS)病変セグメンテーションタスクに制限される。
2つの効果的な再重み付け機構によるFLMS病変分割フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-03T14:06:03Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++は、CTAスキャンで脳血管ツリーをセグメンテーションし、ラベル付けするために設計されたアルゴリズムである。
閉塞血管を同定するために,脳動脈のラベル付け機構を拡張した。
本稿では,そのモデルの全ノードにおける経路の反復的体系探索という一般的な概念を紹介し,新たな対話的特徴を実現する。
論文 参考訳(メタデータ) (2022-04-26T14:20:26Z) - AWSnet: An Auto-weighted Supervision Attention Network for Myocardial
Scar and Edema Segmentation in Multi-sequence Cardiac Magnetic Resonance
Images [23.212429566838203]
マルチシーケンスCMRデータから傷痕と浮腫のセグメンテーションに取り組むための,新しい自動重み付け監視フレームワークを開発した。
また, より小さな心筋病変領域の分画を, 形状の事前知識で促進する, 粗大から細大の枠組みを設計した。
マルチシーケンスCMRデータを用いた心筋病理診断の進歩に期待できる。
論文 参考訳(メタデータ) (2022-01-14T08:59:54Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
本研究は,MyoPS(MyoPS)の医療画像解析における新たな課題を定義するものである。
myoPSは、MICCAI 2020とともにMyoPSチャレンジで最初に提案された3シーケンスの心臓磁気共鳴(CMR)画像を組み合わせている。
この課題は45対のCMR画像と予め整列されたCMR画像を提供し、アルゴリズムは3つのCMRシーケンスから補完的な情報を結合して病理領域を分割することを可能にする。
論文 参考訳(メタデータ) (2022-01-10T06:37:23Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - Edge-competing Pathological Liver Vessel Segmentation with Limited
Labels [61.38846803229023]
病理画像からのMVI検出に適したアルゴリズムはまだ存在しない。
本報告では, 血管, MVI, および腫瘍のグレードをラベルとした522枚のスライド画像を含む, 初めて病理組織学的肝画像データセットを収集する。
本稿では,2つのエッジセグメンテーション・ネットワークと2つのエッジセグメンテーション・ディミネータを含むエッジコンペティング・コンテナ・ネットワーク(EVS-Net)を提案する。
論文 参考訳(メタデータ) (2021-08-01T07:28:32Z) - Cardiac Segmentation on CT Images through Shape-Aware Contour Attentions [1.212901554957637]
心臓臓器は複数のサブ構造(心室、心房、大動脈、動脈、静脈、心筋)から構成される。
これらの心筋サブ構造は互いに近縁であり、識別不能な境界を持つ。
形状と境界認識機能を利用する新しいモデルを提案する。
論文 参考訳(メタデータ) (2021-05-27T13:54:59Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
CT画像を用いた半監視型COVID-19病変分割のための不確実性誘導型二重一貫性学習ネットワーク(UDC-Net)を提案する。
提案した UDC-Net は,Dice の完全教師方式を 6.3% 向上させ,他の競合的半監督方式を有意なマージンで上回っている。
論文 参考訳(メタデータ) (2021-04-07T16:23:35Z) - Myocardial Segmentation of Cardiac MRI Sequences with Temporal
Consistency for Coronary Artery Disease Diagnosis [12.53412028532286]
本研究では,左室腔,右室腔,心筋の心臓MRI(CMR)スキャン画像のシークエンスのための心筋セグメンテーションフレームワークを提案する。
我々のフレームワークは、Dice係数の最大2%のセグメンテーション精度を向上させることができる。
論文 参考訳(メタデータ) (2020-12-29T01:54:09Z) - Spatio-temporal Multi-task Learning for Cardiac MRI Left Ventricle
Quantification [6.887389908965403]
心左心室(LV)形態の完全な測定セットを得るための学習時型マルチタスクアプローチを提案します。
まず,エンコーダデコーダネットワークを用いてLVを分割し,11のLV指標を回帰し,心相を分類する枠組みを導入する。
提案モデルは,mr画像から空間的特徴と特徴を抽出する3次元時空間畳み込みに基づく。
論文 参考訳(メタデータ) (2020-12-24T17:48:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。