論文の概要: Unsupervised Real Time Prediction of Faults Using the Support Vector
Machine
- arxiv url: http://arxiv.org/abs/2012.15032v1
- Date: Wed, 30 Dec 2020 04:27:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-18 17:05:24.090729
- Title: Unsupervised Real Time Prediction of Faults Using the Support Vector
Machine
- Title(参考訳): サポートベクターマシンによる故障の教師なしリアルタイム予測
- Authors: Zhiyuan Chen, Isa Dino and Nik Ahmad Akram
- Abstract要約: 提案手法は,SMOトレーニングアルゴリズムを用いることで,より優れた性能が得られることを示す。
この予測モデルの分類性能は、SMOトレーニングアルゴリズムの有無にかかわらず、SVMよりもかなり優れている。
- 参考スコア(独自算出の注目度): 1.1852751647387592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims at improving the classification accuracy of a Support Vector
Machine (SVM) classifier with Sequential Minimal Optimization (SMO) training
algorithm in order to properly classify failure and normal instances from oil
and gas equipment data. Recent applications of failure analysis have made use
of the SVM technique without implementing SMO training algorithm, while in our
study we show that the proposed solution can perform much better when using the
SMO training algorithm. Furthermore, we implement the ensemble approach, which
is a hybrid rule based and neural network classifier to improve the performance
of the SVM classifier (with SMO training algorithm). The optimization study is
as a result of the underperformance of the classifier when dealing with
imbalanced dataset. The selected best performing classifiers are combined
together with SVM classifier (with SMO training algorithm) by using the
stacking ensemble method which is to create an efficient ensemble predictive
model that can handle the issue of imbalanced data. The classification
performance of this predictive model is considerably better than the SVM with
and without SMO training algorithm and many other conventional classifiers.
- Abstract(参考訳): 本稿では,smo(sequential minimal optimization)トレーニングアルゴリズムを用いた支援ベクトル機械(svm)分類器の分類精度の向上を目的として,油・ガス機器データから故障や正常インスタンスを適切に分類する。
近年の故障解析では,SMOトレーニングアルゴリズムを実装せずにSVM技術を用いているが,本研究では,SMOトレーニングアルゴリズムを用いた場合,提案手法の方が優れた性能が得られることを示す。
さらに、SVM分類器の性能を向上させるために、ハイブリッドルールベースとニューラルネットワーク分類器であるアンサンブルアプローチを実装した(SMOトレーニングアルゴリズムを用いて)。
最適化研究は、不均衡データセットを扱う際の分類器の性能低下の結果である。
選択されたベストパフォーマンス分類器は、不均衡なデータの問題を処理できる効率的なアンサンブル予測モデルを作成するスタックングアンサンブル法を用いて、SVM分類器(SMOトレーニングアルゴリズム)と組み合わせる。
この予測モデルの分類性能は、SMOトレーニングアルゴリズムおよび他の多くの従来の分類器によるSVMよりもかなり優れている。
関連論文リスト
- Handling Imbalanced Classification Problems With Support Vector Machines
via Evolutionary Bilevel Optimization [73.17488635491262]
サポートベクトルマシン(SVM)は、バイナリ分類問題に対処する一般的な学習アルゴリズムである。
この記事では、EBCS-SVMについて紹介する。
論文 参考訳(メタデータ) (2022-04-21T16:08:44Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z) - Max-Margin Contrastive Learning [120.32963353348674]
教師なし表現学習のためのMMCL(max-margin contrastive learning)を提案する。
提案手法は2次最適化問題を用いて得られたスパース支持ベクトルとして負を選択する。
我々は、標準ビジョンベンチマークデータセットに対するアプローチを検証し、教師なし表現学習におけるより良い性能を示す。
論文 参考訳(メタデータ) (2021-12-21T18:56:54Z) - Pretrained Cost Model for Distributed Constraint Optimization Problems [37.79733538931925]
分散制約最適化問題(DCOP)は、最適化問題の重要なサブクラスである。
本稿では,DCOPのための新しい非巡回グラフスキーマ表現を提案し,グラフ表現を組み込むためにグラフ注意ネットワーク(GAT)を利用する。
我々のモデルであるGAT-PCMは、幅広いDCOPアルゴリズムを向上するために、オフラインで最適なラベル付きデータで事前訓練される。
論文 参考訳(メタデータ) (2021-12-08T09:24:10Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Adaptive Sampling for Minimax Fair Classification [40.936345085421955]
最適化の原理に基づく適応型サンプリングアルゴリズムを提案し,その性能に関する理論的境界を導出する。
特定の問題のクラスに対してアルゴリズム独立なローバウンドを導出することにより,適応スキームによる性能は一般に改善できないことを示した。
論文 参考訳(メタデータ) (2021-03-01T04:58:27Z) - Estimating Average Treatment Effects with Support Vector Machines [77.34726150561087]
サポートベクターマシン(SVM)は、機械学習文献で最も人気のある分類アルゴリズムの1つです。
我々はsvmをカーネルベースの重み付け手順として適用し,治療群と制御群の最大平均差を最小化する。
このトレードオフから生じる因果効果推定のバイアスを特徴づけ、提案されたSVM手順と既存のカーネルバランシング手法を結びつけます。
論文 参考訳(メタデータ) (2021-02-23T20:22:56Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z) - Equipment Failure Analysis for Oil and Gas Industry with an Ensemble
Predictive Model [0.0]
提案手法は,SMOトレーニングアルゴリズムを用いることで,より優れた性能が得られることを示す。
この予測モデルの分類性能は、SMOトレーニングアルゴリズムの有無にかかわらず、SVMよりもかなり優れている。
論文 参考訳(メタデータ) (2020-12-30T04:14:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。