H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task
- URL: http://arxiv.org/abs/2012.15318v1
- Date: Wed, 30 Dec 2020 20:44:55 GMT
- Title: H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task
- Authors: Haozhe Jia, Weidong Cai, Heng Huang, Yong Xia
- Abstract summary: Our H2NF-Net uses the single and cascaded HNF-Nets to segment different brain tumor sub-regions.
We trained and evaluated our model on the Multimodal Brain Tumor Challenge (BraTS) 2020 dataset.
Our method won the second place in the BraTS 2020 challenge segmentation task out of nearly 80 participants.
- Score: 96.49879910148854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a Hybrid High-resolution and Non-local Feature
Network (H2NF-Net) to segment brain tumor in multimodal MR images. Our H2NF-Net
uses the single and cascaded HNF-Nets to segment different brain tumor
sub-regions and combines the predictions together as the final segmentation. We
trained and evaluated our model on the Multimodal Brain Tumor Segmentation
Challenge (BraTS) 2020 dataset. The results on the test set show that the
combination of the single and cascaded models achieved average Dice scores of
0.78751, 0.91290, and 0.85461, as well as Hausdorff distances ($95\%$) of
26.57525, 4.18426, and 4.97162 for the enhancing tumor, whole tumor, and tumor
core, respectively. Our method won the second place in the BraTS 2020 challenge
segmentation task out of nearly 80 participants.
Related papers
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.
The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.
The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - Multi-class Brain Tumor Segmentation using Graph Attention Network [3.3635982995145994]
This work introduces an efficient brain tumor summation model by exploiting the advancement in MRI and graph neural networks (GNNs)
The model represents the volumetric MRI as a region adjacency graph (RAG) and learns to identify the type of tumors through a graph attention network (GAT)
arXiv Detail & Related papers (2023-02-11T04:30:40Z) - Multimodal CNN Networks for Brain Tumor Segmentation in MRI: A BraTS
2022 Challenge Solution [0.0]
This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge.
We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI.
It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively.
arXiv Detail & Related papers (2022-12-19T09:14:23Z) - HNF-Netv2 for Brain Tumor Segmentation using multi-modal MR Imaging [86.52489226518955]
We extend our HNF-Net to HNF-Netv2 by adding inter-scale and intra-scale semantic discrimination enhancing blocks.
Our method won the RSNA 2021 Brain Tumor AI Challenge Prize (Segmentation Task)
arXiv Detail & Related papers (2022-02-10T06:34:32Z) - Lung-Originated Tumor Segmentation from Computed Tomography Scan (LOTUS)
Benchmark [48.30502612686276]
Lung cancer is one of the deadliest cancers, and its effective diagnosis and treatment depend on the accurate delineation of the tumor.
Human-centered segmentation, which is currently the most common approach, is subject to inter-observer variability.
The 2018 VIP Cup started with a global engagement from 42 countries to access the competition data.
In a nutshell, all the algorithms proposed during the competition, are based on deep learning models combined with a false positive reduction technique.
arXiv Detail & Related papers (2022-01-03T03:06:38Z) - Ensemble CNN Networks for GBM Tumors Segmentation using Multi-parametric
MRI [0.0]
We propose a new aggregation of two deep learning frameworks namely, DeepSeg and nnU-Net for automatic glioblastoma recognition in pre-operative mpMRI.
Our ensemble method obtains Dice similarity scores of 92.00, 87.33, and 84.10 and Hausdorff Distances of 3.81, 8.91, and 16.02 for the enhancing tumor, tumor core, and whole tumor regions.
arXiv Detail & Related papers (2021-12-13T10:51:20Z) - Multi-stage Deep Layer Aggregation for Brain Tumor Segmentation [2.324913904215885]
The architecture consists of a cascade of three Deep Layer Aggregation neural networks, where each stage elaborates the response using the feature maps and the probabilities of the previous stage.
The neuroimaging data are part of the publicly available Brain Tumor (BraTS) 2020 challenge dataset.
In the Test set, the experimental results achieved a Dice score of 0.8858, 0.8297 and 0.7900, with an Hausdorff Distance of 5.32 mm, 22.32 mm and 20.44 mm for the whole tumor, core tumor and enhanced tumor, respectively.
arXiv Detail & Related papers (2021-01-02T17:59:30Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
We automate and standardize the task of brain tumor segmentation with U-net like neural networks.
Two independent ensembles of models were trained, and each produced a brain tumor segmentation map.
Our solution achieved a Dice of 0.79, 0.89 and 0.84, as well as Hausdorff 95% of 20.4, 6.7 and 19.5mm on the final test dataset.
arXiv Detail & Related papers (2020-10-30T14:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.