Multi-stage Deep Layer Aggregation for Brain Tumor Segmentation
- URL: http://arxiv.org/abs/2101.00490v1
- Date: Sat, 2 Jan 2021 17:59:30 GMT
- Title: Multi-stage Deep Layer Aggregation for Brain Tumor Segmentation
- Authors: Carlos A. Silva, Adriano Pinto, S\'ergio Pereira, and Ana Lopes
- Abstract summary: The architecture consists of a cascade of three Deep Layer Aggregation neural networks, where each stage elaborates the response using the feature maps and the probabilities of the previous stage.
The neuroimaging data are part of the publicly available Brain Tumor (BraTS) 2020 challenge dataset.
In the Test set, the experimental results achieved a Dice score of 0.8858, 0.8297 and 0.7900, with an Hausdorff Distance of 5.32 mm, 22.32 mm and 20.44 mm for the whole tumor, core tumor and enhanced tumor, respectively.
- Score: 2.324913904215885
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Gliomas are among the most aggressive and deadly brain tumors. This paper
details the proposed Deep Neural Network architecture for brain tumor
segmentation from Magnetic Resonance Images. The architecture consists of a
cascade of three Deep Layer Aggregation neural networks, where each stage
elaborates the response using the feature maps and the probabilities of the
previous stage, and the MRI channels as inputs. The neuroimaging data are part
of the publicly available Brain Tumor Segmentation (BraTS) 2020 challenge
dataset, where we evaluated our proposal in the BraTS 2020 Validation and Test
sets. In the Test set, the experimental results achieved a Dice score of
0.8858, 0.8297 and 0.7900, with an Hausdorff Distance of 5.32 mm, 22.32 mm and
20.44 mm for the whole tumor, core tumor and enhanced tumor, respectively.
Related papers
- Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation [47.119513326344126]
The BraTS-MEN-RT challenge aims to advance automated segmentation algorithms using the largest known multi-institutional dataset of radiotherapy planning brain MRIs.
Each case includes a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space.
Target volume annotations adhere to established radiotherapy planning protocols.
arXiv Detail & Related papers (2024-05-28T17:25:43Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.
The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.
The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - Automated Ensemble-Based Segmentation of Adult Brain Tumors: A Novel
Approach Using the BraTS AFRICA Challenge Data [0.0]
We introduce an ensemble method that comprises eleven unique variations based on three core architectures.
Our findings reveal that the ensemble approach, combining different architectures, outperforms single models.
These results underline the potential of tailored deep learning techniques in precisely segmenting brain tumors.
arXiv Detail & Related papers (2023-08-14T15:34:22Z) - Multimodal CNN Networks for Brain Tumor Segmentation in MRI: A BraTS
2022 Challenge Solution [0.0]
This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge.
We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI.
It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively.
arXiv Detail & Related papers (2022-12-19T09:14:23Z) - HNF-Netv2 for Brain Tumor Segmentation using multi-modal MR Imaging [86.52489226518955]
We extend our HNF-Net to HNF-Netv2 by adding inter-scale and intra-scale semantic discrimination enhancing blocks.
Our method won the RSNA 2021 Brain Tumor AI Challenge Prize (Segmentation Task)
arXiv Detail & Related papers (2022-02-10T06:34:32Z) - Ensemble CNN Networks for GBM Tumors Segmentation using Multi-parametric
MRI [0.0]
We propose a new aggregation of two deep learning frameworks namely, DeepSeg and nnU-Net for automatic glioblastoma recognition in pre-operative mpMRI.
Our ensemble method obtains Dice similarity scores of 92.00, 87.33, and 84.10 and Hausdorff Distances of 3.81, 8.91, and 16.02 for the enhancing tumor, tumor core, and whole tumor regions.
arXiv Detail & Related papers (2021-12-13T10:51:20Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
Our H2NF-Net uses the single and cascaded HNF-Nets to segment different brain tumor sub-regions.
We trained and evaluated our model on the Multimodal Brain Tumor Challenge (BraTS) 2020 dataset.
Our method won the second place in the BraTS 2020 challenge segmentation task out of nearly 80 participants.
arXiv Detail & Related papers (2020-12-30T20:44:55Z) - Automatic Brain Tumor Segmentation with Scale Attention Network [1.7767466724342065]
Multimodal Brain Tumor Challenge 2020 (BraTS 2020) provides a common platform for comparing different automatic algorithms on multi-parametric Magnetic Resonance Imaging (mpMRI)
We propose a dynamic scale attention mechanism that incorporates low-level details with high-level semantics from feature maps at different scales.
Our framework was trained using the 369 challenge training cases provided by BraTS 2020, and achieved an average Dice Similarity Coefficient (DSC) of 0.8828, 0.8433 and 0.8177, as well as 95% Hausdorff distance (in millimeter) of 5.2176, 17.9697 and 13.4298 on 166 testing cases for whole tumor
arXiv Detail & Related papers (2020-11-06T04:45:49Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
We automate and standardize the task of brain tumor segmentation with U-net like neural networks.
Two independent ensembles of models were trained, and each produced a brain tumor segmentation map.
Our solution achieved a Dice of 0.79, 0.89 and 0.84, as well as Hausdorff 95% of 20.4, 6.7 and 19.5mm on the final test dataset.
arXiv Detail & Related papers (2020-10-30T14:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.