論文の概要: Autonomous Maintenance in IoT Networks via AoI-driven Deep Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2012.15548v1
- Date: Thu, 31 Dec 2020 11:19:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-17 16:57:17.469158
- Title: Autonomous Maintenance in IoT Networks via AoI-driven Deep Reinforcement
Learning
- Title(参考訳): AoI駆動の深層強化学習によるIoTネットワークの自律的メンテナンス
- Authors: George Stamatakis, Nikolaos Pappas, Alexandros Fragkiadakis, Apostolos
Traganitis
- Abstract要約: IoT(Internet of Things)は、デプロイされるデバイスやアプリケーションの数の増加とともに、ネットワークのメンテナンス手順に大きな課題をもたらしている。
部分観測可能なマルコフ決定プロセスとして,IoTネットワークにおける自律的メンテナンスの問題を定式化する。
深層強化学習アルゴリズム (drl) を用いて, 保守手順が整っているか否かを判断するエージェントを訓練し, 前者の場合, 適切なメンテナンス方法が必要となる。
- 参考スコア(独自算出の注目度): 73.85267769520715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Internet of Things (IoT) with its growing number of deployed devices and
applications raises significant challenges for network maintenance procedures.
In this work, we formulate a problem of autonomous maintenance in IoT networks
as a Partially Observable Markov Decision Process. Subsequently, we utilize
Deep Reinforcement Learning algorithms (DRL) to train agents that decide if a
maintenance procedure is in order or not and, in the former case, the proper
type of maintenance needed. To avoid wasting the scarce resources of IoT
networks we utilize the Age of Information (AoI) metric as a reward signal for
the training of the smart agents. AoI captures the freshness of the sensory
data which are transmitted by the IoT sensors as part of their normal service
provision. Numerical results indicate that AoI integrates enough information
about the past and present states of the system to be successfully used in the
training of smart agents for the autonomous maintenance of the network.
- Abstract(参考訳): IoT(Internet of Things)は、デプロイされるデバイスやアプリケーションの数の増加とともに、ネットワークのメンテナンス手順に大きな課題をもたらしている。
本研究では,IoTネットワークにおける自律的保守の問題を,部分観測可能なマルコフ決定プロセスとして定式化する。
その後,深層強化学習アルゴリズム(drl)を用いて,メンテナンス手順が整っているか否かを判断するエージェントを訓練し,前者の場合,適切なメンテナンスタイプが必要となる。
IoTネットワークの不足するリソースの無駄を避けるため、AI(Age of Information)メトリクスをスマートエージェントのトレーニングのための報酬信号として使用しています。
AoIは、通常のサービス提供の一部としてIoTセンサによって送信されるセンサデータの鮮度をキャプチャする。
シミュレーションの結果,AoIはネットワークの自律的メンテナンスのためのスマートエージェントのトレーニングにおいて,システムの過去と現在の状態に関する情報を十分に統合していることがわかった。
関連論文リスト
- A Learning-based Incentive Mechanism for Mobile AIGC Service in Decentralized Internet of Vehicles [49.86094523878003]
モバイルAIGCサービスアロケーションのための分散インセンティブ機構を提案する。
我々は、AIGCサービスのRSUへの供給と、IoVコンテキスト内のサービスに対するユーザ要求のバランスを見つけるために、マルチエージェントの深層強化学習を採用している。
論文 参考訳(メタデータ) (2024-03-29T12:46:07Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Digital Twin-Native AI-Driven Service Architecture for Industrial
Networks [2.2924151077053407]
我々は、IoTネットワークの概念をサポートするDTネイティブなAI駆動サービスアーキテクチャを提案する。
提案するDTネイティブアーキテクチャでは,TCPベースのデータフローパイプラインと強化学習(RL)ベースの学習モデルを実装している。
論文 参考訳(メタデータ) (2023-11-24T14:56:13Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
インターネット・オブ・センセーズ(IoS)は、すべてのヒト受容体に対する欠陥のないテレプレゼンススタイルのコミュニケーションを約束する。
我々は,新たなセマンティックコミュニケーションと人工知能(AI)/機械学習(ML)パラダイムがIoSユースケースの要件を満たす方法について詳しく述べる。
論文 参考訳(メタデータ) (2022-12-21T03:37:38Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
我々は、エネルギー効率と高速モデルトレーニングのための交通信号認識に強力なスパイクニューラルネットワーク(SNN)を導入している。
数値的な結果から,提案するフェデレーションSNNは,従来のフェデレーション畳み込みニューラルネットワークよりも精度,ノイズ免疫性,エネルギー効率に優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-05-28T03:11:48Z) - AI-Empowered Data Offloading in MEC-Enabled IoV Networks [40.75165195026413]
本稿では、信頼性、セキュリティ、エネルギー管理、サービス販売者利益の4つの主要な問題に基づいて分類された、データオフロードプロセスの一部としてAIを使用する研究を調査する。
MEC対応のIoVネットワークでデータをオフロードするプロセスにおけるさまざまな課題として、高いモバイル環境における信頼性のオフロード、同一ネットワーク内のユーザに対するセキュリティ、ネットワークへの不活性化を防ぐためのエネルギ管理などがある。
論文 参考訳(メタデータ) (2022-03-31T09:31:53Z) - RIS-assisted UAV Communications for IoT with Wireless Power Transfer
Using Deep Reinforcement Learning [75.677197535939]
無人航空機(UAV)通信をサポートするIoTデバイスのための同時無線電力伝送と情報伝送方式を提案する。
第1フェーズでは、IoTデバイスが無線電力転送を通じてUAVからエネルギーを回収し、第2フェーズでは、UAVが情報伝送を通じてIoTデバイスからデータを収集する。
マルコフ決定過程を定式化し、ネットワーク総和率を最大化する最適化問題を解くために、2つの深い強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-05T23:55:44Z) - Deep Reinforcement Learning-Aided RAN Slicing Enforcement for B5G
Latency Sensitive Services [10.718353079920007]
本論文では、無線アクセスネットワークスライスと無線リソース管理に対処するために、ネットワークの端でDeep Reinforcement Learningを利用する新しいアーキテクチャを提案する。
提案手法の有効性を,自律走行型ユースケースを考慮したコンピュータシミュレーションにより検討した。
論文 参考訳(メタデータ) (2021-03-18T14:18:34Z) - IoT Behavioral Monitoring via Network Traffic Analysis [0.45687771576879593]
この論文は、IoTのネットワーク行動パターンをプロファイリングする技術を開発する上で、私たちの努力の成果である。
我々は、交通パターンの属性で訓練された、堅牢な機械学習ベースの推論エンジンを開発する。
99%以上の精度で28台のIoTデバイスのリアルタイム分類を実演する。
論文 参考訳(メタデータ) (2020-01-28T23:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。