Coded Machine Unlearning
- URL: http://arxiv.org/abs/2012.15721v1
- Date: Thu, 31 Dec 2020 17:20:34 GMT
- Title: Coded Machine Unlearning
- Authors: Nasser Aldaghri, Hessam Mahdavifar, Ahmad Beirami
- Abstract summary: We present a coded learning protocol where the dataset is linearly coded before the learning phase.
We also present the corresponding unlearning protocol for the coded learning model along with a discussion on the proposed protocol's success in ensuring perfect unlearning.
- Score: 34.08435990347253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Models trained in machine learning processes may store information about
individual samples used in the training process. There are many cases where the
impact of an individual sample may need to be deleted and unlearned (i.e.,
removed) from the model. Retraining the model from scratch after removing a
sample from its training set guarantees perfect unlearning, however, it becomes
increasingly expensive as the size of training dataset increases. One solution
to this issue is utilizing an ensemble learning method that splits the dataset
into disjoint shards and assigns them to non-communicating weak learners and
then aggregates their models using a pre-defined rule. This framework
introduces a trade-off between performance and unlearning cost which may result
in an unreasonable performance degradation, especially as the number of shards
increases. In this paper, we present a coded learning protocol where the
dataset is linearly coded before the learning phase. We also present the
corresponding unlearning protocol for the aforementioned coded learning model
along with a discussion on the proposed protocol's success in ensuring perfect
unlearning. Finally, experimental results show the effectiveness of the coded
machine unlearning protocol in terms of performance versus unlearning cost
trade-off.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Corrective Machine Unlearning [22.342035149807923]
We formalize Corrective Machine Unlearning as the problem of mitigating the impact of data affected by unknown manipulations on a trained model.
We find most existing unlearning methods, including retraining-from-scratch without the deletion set, require most of the manipulated data to be identified for effective corrective unlearning.
One approach, Selective Synaptic Dampening, achieves limited success, unlearning adverse effects with just a small portion of the manipulated samples in our setting.
arXiv Detail & Related papers (2024-02-21T18:54:37Z) - Unlearning Traces the Influential Training Data of Language Models [31.33791825286853]
This paper presents UnTrac: unlearning traces the influence of a training dataset on the model's performance.
We propose a more scalable approach, UnTrac-Inv, which unlearns a test dataset and evaluates the unlearned model on training datasets.
arXiv Detail & Related papers (2024-01-26T23:17:31Z) - Contrastive Unlearning: A Contrastive Approach to Machine Unlearning [30.38966646250252]
We propose a contrastive unlearning framework, leveraging the concept of representation learning for more effective unlearning.
We show that contrastive unlearning achieves the best unlearning effects and efficiency with the lowest performance loss compared with the state-of-the-art algorithms.
arXiv Detail & Related papers (2024-01-19T02:16:30Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process.
Our study introduces a novel model-based perspective: model sparsification via weight pruning.
We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner.
arXiv Detail & Related papers (2023-04-11T02:12:02Z) - LegoNet: A Fast and Exact Unlearning Architecture [59.49058450583149]
Machine unlearning aims to erase the impact of specific training samples upon deleted requests from a trained model.
We present a novel network, namely textitLegoNet, which adopts the framework of fixed encoder + multiple adapters''
We show that LegoNet accomplishes fast and exact unlearning while maintaining acceptable performance, synthetically outperforming unlearning baselines.
arXiv Detail & Related papers (2022-10-28T09:53:05Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Certifiable Machine Unlearning for Linear Models [1.484852576248587]
Machine unlearning is the task of updating machine learning (ML) models after a subset of the training data they were trained on is deleted.
We present an experimental study of the three state-of-the-art approximate unlearning methods for linear models.
arXiv Detail & Related papers (2021-06-29T05:05:58Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.