論文の概要: Making Pre-trained Language Models Better Few-shot Learners
- arxiv url: http://arxiv.org/abs/2012.15723v1
- Date: Thu, 31 Dec 2020 17:21:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-17 17:25:23.239219
- Title: Making Pre-trained Language Models Better Few-shot Learners
- Title(参考訳): 事前学習型言語モデルの構築
- Authors: Tianyu Gao, Adam Fisch, Danqi Chen
- Abstract要約: 最近のGPT-3モデルは、自然言語プロンプトといくつかのタスクデモンストレーションを入力コンテキストとして活用することで、驚くべき数ショットパフォーマンスを実現します。
これらの知見に触発されて,より実用的なシナリオで,微調整が計算効率のよい小型言語モデルを用いて,小数点学習の研究を行った。
LM-BFF - 少数の注釈付き例で、言語モデルの微調整のためのシンプルで補完的な技術のスイート - 言語モデルのより良い少数ショット微調整を提示します。
- 参考スコア(独自算出の注目度): 11.90626040104822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot
performance solely by leveraging a natural-language prompt and a few task
demonstrations as input context. Inspired by their findings, we study few-shot
learning in a more practical scenario, where we use smaller language models for
which fine-tuning is computationally efficient. We present LM-BFF--better
few-shot fine-tuning of language models--a suite of simple and complementary
techniques for fine-tuning language models on a small number of annotated
examples. Our approach includes (1) prompt-based fine-tuning together with a
novel pipeline for automating prompt generation; and (2) a refined strategy for
dynamically and selectively incorporating demonstrations into each context.
Finally, we present a systematic evaluation for analyzing few-shot performance
on a range of NLP tasks, including classification and regression. Our
experiments demonstrate that our methods combine to dramatically outperform
standard fine-tuning procedures in this low resource setting, achieving up to
30% absolute improvement, and 11% on average across all tasks. Our approach
makes minimal assumptions on task resources and domain expertise, and hence
constitutes a strong task-agnostic method for few-shot learning.
- Abstract(参考訳): 最近のGPT-3モデル(Brown et al., 2020)は、自然言語のプロンプトといくつかのタスクのデモを入力コンテキストとして活用することで、目覚ましい数ショットのパフォーマンスを実現している。
これらの知見に触発されて,より実用的なシナリオで,微調整が計算効率のよい小型言語モデルを用いて,小数点学習の研究を行った。
我々は,少数のアノテーション付き例で言語モデルの微調整を行うための,単純かつ補完的な手法のスイートであるlm-bff(better few-shot fine-tuning of language models)を提案する。
提案手法は,(1)プロンプトベースの微調整と,(2)プロンプト生成を自動化する新しいパイプライン,(2)動的かつ選択的に各コンテキストにデモを組み込むための洗練された戦略を含む。
最後に,NLPタスクの分類と回帰を含む多種多様なタスクにおいて,少数ショットのパフォーマンスを解析するための体系的評価を提案する。
実験の結果,本手法は,この低リソース環境での標準微調整手順を劇的に上回り,最大30%の絶対的改善を達成し,全タスクの平均11%を達成できた。
このアプローチは、タスクリソースとドメインの専門知識を最小限に仮定するので、少数ショット学習のための強力なタスク非依存の手法となる。
関連論文リスト
- Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
本稿では,アクティブ・ラーニング・アルゴリズムが,文脈内学習における効果的な実演選択手法としてどのように機能するかを検討する。
ALによる文脈内サンプル選択は,不確実性の低い高品質な事例を優先し,試験例と類似性を有することを示す。
論文 参考訳(メタデータ) (2023-05-23T17:16:04Z) - Bag of Tricks for Effective Language Model Pretraining and Downstream
Adaptation: A Case Study on GLUE [93.98660272309974]
このレポートでは、ジェネラル言語理解評価のリーダーボードに関するVega v1を簡潔に紹介します。
GLUEは、質問応答、言語受容性、感情分析、テキスト類似性、パラフレーズ検出、自然言語推論を含む9つの自然言語理解タスクのコレクションである。
最適化された事前学習と微調整の戦略により、13億のモデルは4/9タスクに新しい最先端のタスクを設定し、91.3の平均スコアを達成しました。
論文 参考訳(メタデータ) (2023-02-18T09:26:35Z) - Learning New Tasks from a Few Examples with Soft-Label Prototypes [18.363177410917597]
ソフトラベルのプロトタイプ(SLP)に基づく新しい数ショット学習手法を提案する。
これまでにないNLPタスク(4,8,16)の学習に重点を置いている。
このデータ・リーン・セッティングにおけるテスト作業の大部分において,本手法が優れた性能を発揮することを実験的に実証した。
論文 参考訳(メタデータ) (2022-10-31T16:06:48Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
本稿では,LNSR(Layerwise Noise Stability Regularization)という,新規かつ効果的な微調整フレームワークを提案する。
具体的には、標準ガウス雑音を注入し、微調整モデルの隠れ表現を正規化することを提案する。
提案手法は,L2-SP,Mixout,SMARTなど他の最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-12T04:42:49Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
我々は、アスペクト項、カテゴリを抽出し、対応する極性を予測するアスペクトベースの感情分析に焦点を当てる。
本稿では,一方向の注意を伴う生成言語モデルを用いて,抽出タスクと予測タスクをシーケンス生成タスクに再構成することを提案する。
提案手法は,従来の最先端(BERTをベースとした)の性能を,数ショットとフルショットの設定において,大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-04-11T18:31:53Z) - Grad2Task: Improved Few-shot Text Classification Using Gradients for
Task Representation [24.488427641442694]
本稿では,数ショットのテキスト分類のための条件付きニューラルプロセスに基づく新しいアプローチを提案する。
私たちのキーとなるアイデアは、ベースモデルからの勾配情報を使って各タスクを表現することです。
我々のアプローチは、従来の微調整、シーケンシャルトランスファーラーニング、そして最先端のメタラーニングアプローチよりも優れています。
論文 参考訳(メタデータ) (2022-01-27T15:29:30Z) - Differentiable Prompt Makes Pre-trained Language Models Better Few-shot
Learners [23.150999852147283]
本研究は,differiAble pRompT (DART) という新規で効率的なアプローチを提案する。
小さな言語モデルを、素早いエンジニアリングなしで、より優れた数ショットの学習者に変換することができる。
標準NLPタスクの包括的な評価は、提案手法がより優れた数ショット性能を実現することを示す。
論文 参考訳(メタデータ) (2021-08-30T12:29:25Z) - Prompt-Learning for Fine-Grained Entity Typing [40.983849729537795]
完全教師付き,少数ショット,ゼロショットシナリオにおける微粒化エンティティタイピングに対するプロンプトラーニングの適用について検討する。
本稿では,エンティティタイプの情報を自動的に要約するために,プロンプトラーニングにおける分布レベルの最適化を行う自己教師型戦略を提案する。
論文 参考訳(メタデータ) (2021-08-24T09:39:35Z) - Language Models are Few-Shot Butlers [0.2538209532048867]
本稿では,実演から学ぶ2段階の手順を紹介し,環境との相互作用によりさらに改善する。
本稿では,alfworld環境における既存手法よりも言語モデルに精細な調整を施し,簡単な強化学習アルゴリズムにより51%の成功率を向上できることを示す。
論文 参考訳(メタデータ) (2021-04-16T08:47:07Z) - Language Models are Few-Shot Learners [61.36677350504291]
言語モデルのスケールアップにより、タスクに依存しない、少数ショットのパフォーマンスが大幅に向上することを示す。
我々は、1750億のパラメータを持つ自動回帰言語モデルであるGPT-3を訓練し、その性能を数ショットでテストする。
GPT-3は、翻訳、質問応答、クローズタスクを含む多くのNLPデータセットで高いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-05-28T17:29:03Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
本稿では,下流タスクを効果的に学習するために,モデルがテキスト表現を学習する能力を直接最適化する学習アルゴリズムを提案する。
マルチタスク事前学習とモデル非依存型メタラーニングの間には,一連のメタトレインステップによる本質的な関係があることが示されている。
論文 参考訳(メタデータ) (2020-04-12T09:05:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。