論文の概要: Poisoning Attacks on Cyber Attack Detectors for Industrial Control
Systems
- arxiv url: http://arxiv.org/abs/2012.15740v1
- Date: Wed, 23 Dec 2020 14:11:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-25 18:00:07.547554
- Title: Poisoning Attacks on Cyber Attack Detectors for Industrial Control
Systems
- Title(参考訳): 産業制御システムにおけるサイバー攻撃検知器の攻撃対策
- Authors: Moshe Kravchik and Battista Biggio and Asaf Shabtai
- Abstract要約: 私たちはICSオンラインニューラルネットワーク検出器に対するこのような毒攻撃を最初に実演しています。
バックグラデーションベースの中毒という2つの異なる攻撃アルゴリズムを提案し、合成データと実世界のデータの両方でその効果を実証する。
- 参考スコア(独自算出の注目度): 34.86059492072526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, neural network (NN)-based methods, including autoencoders, have
been proposed for the detection of cyber attacks targeting industrial control
systems (ICSs). Such detectors are often retrained, using data collected during
system operation, to cope with the natural evolution (i.e., concept drift) of
the monitored signals. However, by exploiting this mechanism, an attacker can
fake the signals provided by corrupted sensors at training time and poison the
learning process of the detector such that cyber attacks go undetected at test
time. With this research, we are the first to demonstrate such poisoning
attacks on ICS cyber attack online NN detectors. We propose two distinct attack
algorithms, namely, interpolation- and back-gradient based poisoning, and
demonstrate their effectiveness on both synthetic and real-world ICS data. We
also discuss and analyze some potential mitigation strategies.
- Abstract(参考訳): 近年,産業制御システム(ICS)を対象としたサイバー攻撃の検出において,オートエンコーダを含むニューラルネットワークに基づく手法が提案されている。
このような検出器は、監視された信号の自然進化(すなわち概念ドリフト)に対処するために、システム操作中に収集されたデータを使用して再訓練されることが多い。
しかし、このメカニズムを悪用することにより、攻撃者は、トレーニング時に破損したセンサーによって提供された信号を偽装し、テスト時にサイバー攻撃が検出されないように検出器の学習プロセスを汚染することができる。
この研究により、我々はICSサイバー攻撃オンラインNN検出器に対するこのような毒攻撃を初めて実証した。
本研究では,2つの異なる攻撃アルゴリズム,すなわち補間と逆勾配に基づく中毒を提案し,その効果を合成および実世界のicデータで実証する。
また,潜在的な緩和戦略について検討・分析する。
関連論文リスト
- A Variational Autoencoder Framework for Robust, Physics-Informed
Cyberattack Recognition in Industrial Cyber-Physical Systems [2.051548207330147]
我々は、産業制御システムに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発する。
このフレームワークは、可変オートエンコーダ(VAE)、リカレントニューラルネットワーク(RNN)、ディープニューラルネットワーク(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2023-10-10T19:07:53Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - Early Detection of Network Attacks Using Deep Learning [0.0]
ネットワーク侵入検知システム(英: Network Intrusion Detection System、IDS)は、ネットワークトラフィックを観察することによって、不正かつ悪意のない行動を特定するためのツールである。
本稿では,攻撃対象のシステムにダメージを与える前に,ネットワーク攻撃を防止するために,エンド・ツー・エンドの早期侵入検知システムを提案する。
論文 参考訳(メタデータ) (2022-01-27T16:35:37Z) - A Heterogeneous Graph Learning Model for Cyber-Attack Detection [4.559898668629277]
サイバー攻撃は、ハッカーが標的とする情報システムに侵入する悪意のある試みである。
本稿では,証明データに基づく知的サイバー攻撃検出手法を提案する。
実験の結果,提案手法は他の学習ベース検出モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-12-16T16:03:39Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Adversarial Attacks and Mitigation for Anomaly Detectors of
Cyber-Physical Systems [6.417955560857806]
本研究では,CPSの異常検出器とルールチェッカーを同時に回避する対向攻撃を提案する。
既存の勾配に基づくアプローチにインスパイアされた我々の敵攻撃は、センサーとアクチュエーターの値にノイズを発生させ、遺伝的アルゴリズムを使って後者を最適化する。
実世界の2つの重要なインフラテストベッドに対するアプローチを実装し、検出器の分類精度を平均50%以上下げることに成功した。
論文 参考訳(メタデータ) (2021-05-22T12:19:03Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
本稿では,TANTRA(Adversarial Network Traffic Reshaping Attack)を提案する。
我々の回避攻撃は、ターゲットネットワークの良性パケット間の時間差を学習するために訓練された長い短期記憶(LSTM)ディープニューラルネットワーク(DNN)を利用する。
TANTRAは、ネットワーク侵入検出システム回避の平均成功率99.99%を達成します。
論文 参考訳(メタデータ) (2021-03-10T19:03:38Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
本稿では,システムの物理的特性に反する逆スプーフ信号を生成するための新しい枠組みを提案する。
トップセキュリティカンファレンスで公表された4つの異常検知器を分析した。
論文 参考訳(メタデータ) (2020-12-07T11:02:44Z) - Can't Boil This Frog: Robustness of Online-Trained Autoencoder-Based
Anomaly Detectors to Adversarial Poisoning Attacks [26.09388179354751]
本研究は,オンライン学習型オートエンコーダを用いたアタック検出装置に対する中毒攻撃に焦点を当てた最初の研究である。
提案アルゴリズムは, オートエンコーダ検出器によって検出されない標的攻撃の原因となる毒のサンプルを生成することができることを示す。
この発見は、サイバー物理領域で使用されるニューラルネットワークベースの攻撃検出器が、他の問題領域よりも毒性に強いことを示唆している。
論文 参考訳(メタデータ) (2020-02-07T12:41:28Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。