論文の概要: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers
- arxiv url: http://arxiv.org/abs/2012.15840v2
- Date: Tue, 30 Mar 2021 10:07:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-17 20:24:54.002963
- Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers
- Title(参考訳): 変圧器を用いたシーケンス・ツー・シーケンスの観点からの意味セグメンテーション再考
- Authors: Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo,
Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip H.S. Torr, Li Zhang
- Abstract要約: セマンティックセグメンテーションをシーケンスからシーケンスへの予測タスクとして扱う。
具体的には、イメージをパッチのシーケンスとしてエンコードするために純粋なトランスをデプロイします。
トランスのすべての層でモデル化されたグローバルコンテキストにより、このエンコーダは、SETR(SEgmentation TRansformer)と呼ばれる強力なセグメンテーションモデルを提供するための単純なデコーダと組み合わせることができる。
SETRはADE20K(50.28% mIoU)、Pascal Context(55.83% mIoU)、およびCityscapesの競争力のある結果に関する最新技術を達成している。
- 参考スコア(独自算出の注目度): 149.78470371525754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most recent semantic segmentation methods adopt a fully-convolutional network
(FCN) with an encoder-decoder architecture. The encoder progressively reduces
the spatial resolution and learns more abstract/semantic visual concepts with
larger receptive fields. Since context modeling is critical for segmentation,
the latest efforts have been focused on increasing the receptive field, through
either dilated/atrous convolutions or inserting attention modules. However, the
encoder-decoder based FCN architecture remains unchanged. In this paper, we aim
to provide an alternative perspective by treating semantic segmentation as a
sequence-to-sequence prediction task. Specifically, we deploy a pure
transformer (ie, without convolution and resolution reduction) to encode an
image as a sequence of patches. With the global context modeled in every layer
of the transformer, this encoder can be combined with a simple decoder to
provide a powerful segmentation model, termed SEgmentation TRansformer (SETR).
Extensive experiments show that SETR achieves new state of the art on ADE20K
(50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on
Cityscapes. Particularly, we achieve the first position in the highly
competitive ADE20K test server leaderboard on the day of submission.
- Abstract(参考訳): 最近のセマンティックセグメンテーション手法では、エンコーダ-デコーダアーキテクチャを備えた完全畳み込みネットワーク(FCN)を採用している。
エンコーダは空間分解能を徐々に減らし、より大きな受容場を持つ抽象的・意味的な視覚概念を学習する。
コンテキストモデリングはセグメンテーションに欠かせないため、最新の取り組みは、拡張/アトラスな畳み込みまたは注意モジュール挿入を通じて、受容領域の拡大に焦点を当てている。
しかし、エンコーダ-デコーダベースのFCNアーキテクチャは変わっていない。
本稿では,セマンティックセグメンテーションをシーケンス・ツー・シーケンス予測タスクとして扱うことで,新たな視点を提供する。
具体的には、イメージをパッチのシーケンスとしてエンコードするために、純粋なトランス(畳み込みや分解能低下なしに)をデプロイします。
トランスのすべての層でモデル化されたグローバルコンテキストにより、このエンコーダは、SETR(SEgmentation TRansformer)と呼ばれる強力なセグメンテーションモデルを提供する単純なデコーダと組み合わせることができる。
大規模な実験により、SETRはADE20K(50.28% mIoU)、Pascal Context(55.83% mIoU)、およびCityscapes(英語版)の競争結果の新たな状態を達成することが示された。
特に,競争の激しい ade20k テストサーバのリーダボードにおいて,提出当日に最初のポジションを得る。
関連論文リスト
- Progressive Token Length Scaling in Transformer Encoders for Efficient Universal Segmentation [67.85309547416155]
ユニバーサルセグメンテーションのための強力なアーキテクチャは、マルチスケールの画像特徴を符号化し、オブジェクトクエリをマスク予測にデコードするトランスフォーマーに依存している。
Mask2Formerはその計算の50%をトランスフォーマーエンコーダでのみ使用する。
これは、エンコーダ層ごとにすべてのバックボーン機能スケールのトークンレベルの完全な表現が保持されているためである。
本稿では,パフォーマンスの犠牲を最小限に抑えながら,計算量を大幅に削減するPro-SCALEを提案する。
論文 参考訳(メタデータ) (2024-04-23T01:34:20Z) - SegViTv2: Exploring Efficient and Continual Semantic Segmentation with
Plain Vision Transformers [76.13755422671822]
本稿では,エンコーダ・デコーダ・フレームワークを用いた意味的セグメンテーションのためのプレーンビジョン変換器(ViT)の能力について検討する。
Intention-to-Mask(atm)モジュールを導入し、平易なViTに有効な軽量デコーダを設計する。
我々のデコーダは、様々なViTバックボーンを使用して人気のあるデコーダUPerNetより優れ、計算コストの5%程度しか消費しない。
論文 参考訳(メタデータ) (2023-06-09T22:29:56Z) - Dynamic Grained Encoder for Vision Transformers [150.02797954201424]
本稿では,自然画像の空間的冗長性を生かした視覚変換器のスパースクエリを提案する。
本研究では,各空間領域に適切なクエリ数を適応的に割り当てる動的変換器を提案する。
我々のエンコーダにより、最先端のビジョン変換器は、画像分類において同等の性能を維持しながら、計算複雑性を40%から60%削減できる。
論文 参考訳(メタデータ) (2023-01-10T07:55:29Z) - Fully Transformer Networks for Semantic ImageSegmentation [26.037770622551882]
エンコーダデコーダをベースとしたFully Transformer Networks (FTN) を用いた意味的イメージセグメンテーションのための新しいフレームワークについて検討する。
階層的特徴を段階的に学習するエンコーダとして、標準視覚変換器(ViT)の計算複雑性を低減しつつ、ピラミッド群変換器(PGT)を提案する。
次に,セマンティックイメージセグメンテーションのためのPGTエンコーダの複数レベルから意味レベルと空間レベル情報を融合する特徴ピラミッドトランス (FPT) を提案する。
論文 参考訳(メタデータ) (2021-06-08T05:15:28Z) - Segmenter: Transformer for Semantic Segmentation [79.9887988699159]
セマンティックセグメンテーションのためのトランスフォーマーモデルであるSegmenterを紹介します。
最近のViT(Vision Transformer)上に構築し,セマンティックセグメンテーションに拡張する。
これは、挑戦的なADE20Kデータセット上でのアートの状態を上回り、Pascal ContextとCityscapesでオンパーを実行する。
論文 参考訳(メタデータ) (2021-05-12T13:01:44Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unetは、医用画像セグメンテーション用のUnetライクなトランスフォーマーである。
トークン化されたイメージパッチは、TransformerベースのU字型デコーダデコーダアーキテクチャに供給される。
論文 参考訳(メタデータ) (2021-05-12T09:30:26Z) - Transformer Meets DCFAM: A Novel Semantic Segmentation Scheme for
Fine-Resolution Remote Sensing Images [6.171417925832851]
Swin Transformerをバックボーンとして導入し、コンテキスト情報を完全に抽出します。
また、高密度接続特徴集合モジュール(DCFAM)と呼ばれる新しいデコーダを設計し、解像度を復元し、セグメンテーションマップを生成する。
論文 参考訳(メタデータ) (2021-04-25T11:34:22Z) - UNETR: Transformers for 3D Medical Image Segmentation [8.59571749685388]
UNEt TRansformers(UNETR)と呼ばれる新しいアーキテクチャを導入し、純粋なトランスフォーマーをエンコーダとして入力ボリュームのシーケンス表現を学習します。
提案モデルの性能を様々なイメージング手法で広く検証しています。
論文 参考訳(メタデータ) (2021-03-18T20:17:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。