Random Embeddings with Optimal Accuracy
- URL: http://arxiv.org/abs/2101.00029v1
- Date: Thu, 31 Dec 2020 19:00:31 GMT
- Title: Random Embeddings with Optimal Accuracy
- Authors: Maciej Skorski
- Abstract summary: This work constructs Jonson-Lindenstrauss embeddings with best accuracy, as measured by variance, mean-squared error and exponential length distortion.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work constructs Jonson-Lindenstrauss embeddings with best accuracy, as
measured by variance, mean-squared error and exponential concentration of the
length distortion. Lower bounds for any data and embedding dimensions are
determined, and accompanied by matching and efficiently samplable constructions
(built on orthogonal matrices). Novel techniques: a unit sphere
parametrization, the use of singular-value latent variables and Schur-convexity
are of independent interest.
Related papers
- A Bayesian Approach Toward Robust Multidimensional Ellipsoid-Specific Fitting [0.0]
This work presents a novel and effective method for fitting multidimensional ellipsoids to scattered data in the contamination of noise and outliers.
We incorporate a uniform prior distribution to constrain the search for primitive parameters within an ellipsoidal domain.
We apply it to a wide range of practical applications such as microscopy cell counting, 3D reconstruction, geometric shape approximation, and magnetometer calibration tasks.
arXiv Detail & Related papers (2024-07-27T14:31:51Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - General Gaussian Noise Mechanisms and Their Optimality for Unbiased Mean
Estimation [58.03500081540042]
A classical approach to private mean estimation is to compute the true mean and add unbiased, but possibly correlated, Gaussian noise to it.
We show that for every input dataset, an unbiased mean estimator satisfying concentrated differential privacy introduces approximately at least as much error.
arXiv Detail & Related papers (2023-01-31T18:47:42Z) - Wasserstein Distributionally Robust Estimation in High Dimensions:
Performance Analysis and Optimal Hyperparameter Tuning [0.0]
We propose a Wasserstein distributionally robust estimation framework to estimate an unknown parameter from noisy linear measurements.
We focus on the task of analyzing the squared error performance of such estimators.
We show that the squared error can be recovered as the solution of a convex-concave optimization problem.
arXiv Detail & Related papers (2022-06-27T13:02:59Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
We use isometries to separate manifold learning and density estimation.
We also employ autoencoders to design embeddings with explicit inverses that do not distort the probability distribution.
arXiv Detail & Related papers (2022-03-08T08:57:43Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
Bi-Lipschitz regularization of neural network layers preserve relative distances between data instances in the feature spaces of each layer.
With the use of an attentive set encoder, we propose to meta learn either diagonal or diagonal plus low-rank factors to efficiently construct task specific covariance matrices.
We also propose an inference procedure which utilizes scaled energy to achieve a final predictive distribution.
arXiv Detail & Related papers (2021-10-12T22:04:19Z) - Confidence-Optimal Random Embeddings [0.0]
This paper develops Johnson-Lindenstrauss distributions with optimal, data-oblivious, statistical confidence bounds.
The bounds are numerically best possible, for any given data dimension, embedding, and distortion tolerance.
They improve upon prior works in terms of statistical accuracy, as well as exactly determine the no-go regimes for data-oblivious approaches.
arXiv Detail & Related papers (2021-04-06T18:00:02Z) - Random extrapolation for primal-dual coordinate descent [61.55967255151027]
We introduce a randomly extrapolated primal-dual coordinate descent method that adapts to sparsity of the data matrix and the favorable structures of the objective function.
We show almost sure convergence of the sequence and optimal sublinear convergence rates for the primal-dual gap and objective values, in the general convex-concave case.
arXiv Detail & Related papers (2020-07-13T17:39:35Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.