Bayesian Analysis for Over-parameterized Linear Model via Effective Spectra
- URL: http://arxiv.org/abs/2305.15754v3
- Date: Mon, 05 May 2025 13:41:41 GMT
- Title: Bayesian Analysis for Over-parameterized Linear Model via Effective Spectra
- Authors: Tomoya Wakayama, Masaaki Imaizumi,
- Abstract summary: We introduce a data-adaptive Gaussian prior that targets the data's intrinsic complexity rather than its ambient dimension.<n>We establish contraction rates of the corresponding posterior distribution, which reveal how the mass in the spectrum affects the prediction error bounds.<n>Our findings demonstrate that Bayesian methods leveraging spectral information of the data are effective for estimation in non-sparse, high-dimensional settings.
- Score: 6.9060054915724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In high-dimensional Bayesian statistics, various methods have been developed, including prior distributions that induce parameter sparsity to handle many parameters. Yet, these approaches often overlook the rich spectral structure of the covariate matrix, which can be crucial when true signals are not sparse. To address this gap, we introduce a data-adaptive Gaussian prior whose covariance is aligned with the leading eigenvectors of the sample covariance. This prior design targets the data's intrinsic complexity rather than its ambient dimension by concentrating the parameter search along principal data directions. We establish contraction rates of the corresponding posterior distribution, which reveal how the mass in the spectrum affects the prediction error bounds. Furthermore, we derive a truncated Gaussian approximation to the posterior (i.e., a Bernstein-von Mises-type result), which allows for uncertainty quantification with a reduced computational burden. Our findings demonstrate that Bayesian methods leveraging spectral information of the data are effective for estimation in non-sparse, high-dimensional settings.
Related papers
- Optimal Implicit Bias in Linear Regression [20.710343135282116]
We find the optimal implicit bias that leads to the best generalization performance.<n>In particular, we obtain a tight lower bound on the best generalization error possible among this class of interpolators.
arXiv Detail & Related papers (2025-06-20T17:41:39Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - A Bayesian Approach Toward Robust Multidimensional Ellipsoid-Specific Fitting [0.0]
This work presents a novel and effective method for fitting multidimensional ellipsoids to scattered data in the contamination of noise and outliers.
We incorporate a uniform prior distribution to constrain the search for primitive parameters within an ellipsoidal domain.
We apply it to a wide range of practical applications such as microscopy cell counting, 3D reconstruction, geometric shape approximation, and magnetometer calibration tasks.
arXiv Detail & Related papers (2024-07-27T14:31:51Z) - Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
We show how diffusion-based models can be repurposed for performing principled, identifiable Bayesian inference.
We show how such maps can be learned via standard DBM training using a novel noise schedule.
The result is a class of highly expressive generative models, uniquely defined on a low-dimensional latent space.
arXiv Detail & Related papers (2024-07-11T19:58:19Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Bayesian Inference for Consistent Predictions in Overparameterized Nonlinear Regression [0.0]
This study explores the predictive properties of over parameterized nonlinear regression within the Bayesian framework.
Posterior contraction is established for generalized linear and single-neuron models with Lipschitz continuous activation functions.
The proposed method was validated via numerical simulations and a real data application.
arXiv Detail & Related papers (2024-04-06T04:22:48Z) - Spectral Estimators for Structured Generalized Linear Models via Approximate Message Passing [28.91482208876914]
We consider the problem of parameter estimation in a high-dimensional generalized linear model.
Despite their wide use, a rigorous performance characterization, as well as a principled way to preprocess the data, are available only for unstructured designs.
arXiv Detail & Related papers (2023-08-28T11:49:23Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Sparse Horseshoe Estimation via Expectation-Maximisation [2.1485350418225244]
We propose a novel expectation-maximisation (EM) procedure for computing the MAP estimates of the parameters.
A particular strength of our approach is that the M-step depends only on the form of the prior and it is independent of the form of the likelihood.
In experiments performed on simulated and real data, our approach performs comparable, or superior to, state-of-the-art sparse estimation methods.
arXiv Detail & Related papers (2022-11-07T00:43:26Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - Weight Vector Tuning and Asymptotic Analysis of Binary Linear
Classifiers [82.5915112474988]
This paper proposes weight vector tuning of a generic binary linear classifier through the parameterization of a decomposition of the discriminant by a scalar.
It is also found that weight vector tuning significantly improves the performance of Linear Discriminant Analysis (LDA) under high estimation noise.
arXiv Detail & Related papers (2021-10-01T17:50:46Z) - A likelihood approach to nonparametric estimation of a singular
distribution using deep generative models [4.329951775163721]
We investigate a likelihood approach to nonparametric estimation of a singular distribution using deep generative models.
We prove that a novel and effective solution exists by perturbing the data with an instance noise.
We also characterize the class of distributions that can be efficiently estimated via deep generative models.
arXiv Detail & Related papers (2021-05-09T23:13:58Z) - Adaptive and Oblivious Randomized Subspace Methods for High-Dimensional
Optimization: Sharp Analysis and Lower Bounds [37.03247707259297]
A suitable adaptive subspace can be generated by sampling a correlated random matrix whose second order statistics mirror the input data.
We show that the relative error of the randomized approximations can be tightly characterized in terms of the spectrum of the data matrix.
Experimental results show that the proposed approach enables significant speed ups in a wide variety of machine learning and optimization problems.
arXiv Detail & Related papers (2020-12-13T13:02:31Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - Nonparametric Score Estimators [49.42469547970041]
Estimating the score from a set of samples generated by an unknown distribution is a fundamental task in inference and learning of probabilistic models.
We provide a unifying view of these estimators under the framework of regularized nonparametric regression.
We propose score estimators based on iterative regularization that enjoy computational benefits from curl-free kernels and fast convergence.
arXiv Detail & Related papers (2020-05-20T15:01:03Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.