Multitask Learning for Class-Imbalanced Discourse Classification
- URL: http://arxiv.org/abs/2101.00389v1
- Date: Sat, 2 Jan 2021 07:13:41 GMT
- Title: Multitask Learning for Class-Imbalanced Discourse Classification
- Authors: Alexander Spangher, Jonathan May, Sz-rung Shiang and Lingjia Deng
- Abstract summary: We show that a multitask approach can improve 7% Micro F1-score upon current state-of-the-art benchmarks.
We also offer a comparative review of additional techniques proposed to address resource-poor problems in NLP.
- Score: 74.41900374452472
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Small class-imbalanced datasets, common in many high-level semantic tasks
like discourse analysis, present a particular challenge to current
deep-learning architectures. In this work, we perform an extensive analysis on
sentence-level classification approaches for the News Discourse dataset, one of
the largest high-level semantic discourse datasets recently published. We show
that a multitask approach can improve 7% Micro F1-score upon current
state-of-the-art benchmarks, due in part to label corrections across tasks,
which improve performance for underrepresented classes. We also offer a
comparative review of additional techniques proposed to address resource-poor
problems in NLP, and show that none of these approaches can improve
classification accuracy in such a setting.
Related papers
- Improving the Evaluation and Actionability of Explanation Methods for Multivariate Time Series Classification [4.588028371034407]
We focus on analyzing InterpretTime, a recent evaluation methodology for attribution methods applied to MTSC.
We showcase some significant weaknesses of the original methodology and propose ideas to improve its accuracy and efficiency.
We find that perturbation-based methods such as SHAP and Feature Ablation work well across a set of datasets.
arXiv Detail & Related papers (2024-06-18T11:18:46Z) - One-Shot Learning as Instruction Data Prospector for Large Language Models [108.81681547472138]
textscNuggets uses one-shot learning to select high-quality instruction data from extensive datasets.
We show that instruction tuning with the top 1% of examples curated by textscNuggets substantially outperforms conventional methods employing the entire dataset.
arXiv Detail & Related papers (2023-12-16T03:33:12Z) - Order Matters in the Presence of Dataset Imbalance for Multilingual
Learning [53.74649778447903]
We present a simple yet effective method of pre-training on high-resource tasks, followed by fine-tuning on a mixture of high/low-resource tasks.
We show its improvements in neural machine translation (NMT) and multi-lingual language modeling.
arXiv Detail & Related papers (2023-12-11T05:46:57Z) - Efficient IoT Inference via Context-Awareness [8.882680489254923]
We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification.
We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
arXiv Detail & Related papers (2023-10-29T18:57:15Z) - Learning to Paraphrase Sentences to Different Complexity Levels [3.0273878903284275]
Sentence simplification is an active research topic in NLP, but its adjacent tasks of sentence complexification and same-level paraphrasing are not.
To train models on all three tasks, we present two new unsupervised datasets.
arXiv Detail & Related papers (2023-08-04T09:43:37Z) - Prefer to Classify: Improving Text Classifiers via Auxiliary Preference
Learning [76.43827771613127]
In this paper, we investigate task-specific preferences between pairs of input texts as a new alternative way for such auxiliary data annotation.
We propose a novel multi-task learning framework, called prefer-to-classify (P2C), which can enjoy the cooperative effect of learning both the given classification task and the auxiliary preferences.
arXiv Detail & Related papers (2023-06-08T04:04:47Z) - Learning Context-aware Classifier for Semantic Segmentation [88.88198210948426]
In this paper, contextual hints are exploited via learning a context-aware classifier.
Our method is model-agnostic and can be easily applied to generic segmentation models.
With only negligible additional parameters and +2% inference time, decent performance gain has been achieved on both small and large models.
arXiv Detail & Related papers (2023-03-21T07:00:35Z) - Task-Specific Embeddings for Ante-Hoc Explainable Text Classification [6.671252951387647]
We propose an alternative training objective in which we learn task-specific embeddings of text.
Our proposed objective learns embeddings such that all texts that share the same target class label should be close together.
We present extensive experiments which show that the benefits of ante-hoc explainability and incremental learning come at no cost in overall classification accuracy.
arXiv Detail & Related papers (2022-11-30T19:56:25Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
We propose a novel augmentation method with language models trained on the linearized labeled sentences.
Our method is applicable to both supervised and semi-supervised settings.
arXiv Detail & Related papers (2020-11-03T07:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.