Learning to Paraphrase Sentences to Different Complexity Levels
- URL: http://arxiv.org/abs/2308.02226v1
- Date: Fri, 4 Aug 2023 09:43:37 GMT
- Title: Learning to Paraphrase Sentences to Different Complexity Levels
- Authors: Alison Chi, Li-Kuang Chen, Yi-Chen Chang, Shu-Hui Lee, Jason S. Chang
- Abstract summary: Sentence simplification is an active research topic in NLP, but its adjacent tasks of sentence complexification and same-level paraphrasing are not.
To train models on all three tasks, we present two new unsupervised datasets.
- Score: 3.0273878903284275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While sentence simplification is an active research topic in NLP, its
adjacent tasks of sentence complexification and same-level paraphrasing are
not. To train models on all three tasks, we present two new unsupervised
datasets. We compare these datasets, one labeled by a weak classifier and the
other by a rule-based approach, with a single supervised dataset. Using these
three datasets for training, we perform extensive experiments on both
multitasking and prompting strategies. Compared to other systems trained on
unsupervised parallel data, models trained on our weak classifier labeled
dataset achieve state-of-the-art performance on the ASSET simplification
benchmark. Our models also outperform previous work on sentence level
targeting. Finally, we establish how a handful of Large Language Models perform
on these tasks under a zero-shot setting.
Related papers
- Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - Combining Denoising Autoencoders with Contrastive Learning to fine-tune Transformer Models [0.0]
This work proposes a 3 Phase technique to adjust a base model for a classification task.
We adapt the model's signal to the data distribution by performing further training with a Denoising Autoencoder (DAE)
In addition, we introduce a new data augmentation approach for Supervised Contrastive Learning to correct the unbalanced datasets.
arXiv Detail & Related papers (2024-05-23T11:08:35Z) - Multilevel Sentence Embeddings for Personality Prediction [0.0]
We propose a two step approach which enables us to map sentences according to their hierarchical memberships and polarity.
We show that our single model approach performs better than multiple class-specific classification models.
arXiv Detail & Related papers (2023-05-09T20:02:18Z) - Distant finetuning with discourse relations for stance classification [55.131676584455306]
We propose a new method to extract data with silver labels from raw text to finetune a model for stance classification.
We also propose a 3-stage training framework where the noisy level in the data used for finetuning decreases over different stages.
Our approach ranks 1st among 26 competing teams in the stance classification track of the NLPCC 2021 shared task Argumentative Text Understanding for AI Debater.
arXiv Detail & Related papers (2022-04-27T04:24:35Z) - Multitask Learning for Class-Imbalanced Discourse Classification [74.41900374452472]
We show that a multitask approach can improve 7% Micro F1-score upon current state-of-the-art benchmarks.
We also offer a comparative review of additional techniques proposed to address resource-poor problems in NLP.
arXiv Detail & Related papers (2021-01-02T07:13:41Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Improving Context Modeling in Neural Topic Segmentation [18.92944038749279]
We enhance a segmenter based on a hierarchical attention BiLSTM network to better model context.
Our optimized segmenter outperforms SOTA approaches when trained and tested on three datasets.
arXiv Detail & Related papers (2020-10-07T03:40:49Z) - KGPT: Knowledge-Grounded Pre-Training for Data-to-Text Generation [100.79870384880333]
We propose a knowledge-grounded pre-training (KGPT) to generate knowledge-enriched text.
We adopt three settings, namely fully-supervised, zero-shot, few-shot to evaluate its effectiveness.
Under zero-shot setting, our model achieves over 30 ROUGE-L on WebNLG while all other baselines fail.
arXiv Detail & Related papers (2020-10-05T19:59:05Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
We develop a training strategy that allows even a simple BiLSTM model, when trained with cross-entropy loss, to achieve competitive results.
We report state-of-the-art results for text classification task on several benchmark datasets.
arXiv Detail & Related papers (2020-09-08T21:55:22Z) - Adaptive Name Entity Recognition under Highly Unbalanced Data [5.575448433529451]
We present our experiments on a neural architecture composed of a Conditional Random Field (CRF) layer stacked on top of a Bi-directional LSTM (BI-LSTM) layer for solving NER tasks.
We introduce an add-on classification model to split sentences into two different sets: Weak and Strong classes and then designing a couple of Bi-LSTM-CRF models properly to optimize performance on each set.
arXiv Detail & Related papers (2020-03-10T06:56:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.