論文の概要: On the confidence of stereo matching in a deep-learning era: a
quantitative evaluation
- arxiv url: http://arxiv.org/abs/2101.00431v3
- Date: Tue, 30 Mar 2021 19:15:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-13 07:17:30.062088
- Title: On the confidence of stereo matching in a deep-learning era: a
quantitative evaluation
- Title(参考訳): ディープラーニング時代のステレオマッチングの信頼性について:定量的評価
- Authors: Matteo Poggi, Seungryong Kim, Fabio Tosi, Sunok Kim, Filippo Aleotti,
Dongbo Min, Kwanghoon Sohn, Stefano Mattoccia
- Abstract要約: ステレオマッチングにおける信頼度推定の分野における10年以上の発展を概観する。
本研究では,異なるステレオアルゴリズムのプールに適用した場合と,最先端のディープステレオネットワークと組み合わせる場合とで,各測定値の異なる挙動について検討する。
- 参考スコア(独自算出の注目度): 124.09613797008099
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stereo matching is one of the most popular techniques to estimate dense depth
maps by finding the disparity between matching pixels on two, synchronized and
rectified images. Alongside with the development of more accurate algorithms,
the research community focused on finding good strategies to estimate the
reliability, i.e. the confidence, of estimated disparity maps. This information
proves to be a powerful cue to naively find wrong matches as well as to improve
the overall effectiveness of a variety of stereo algorithms according to
different strategies. In this paper, we review more than ten years of
developments in the field of confidence estimation for stereo matching. We
extensively discuss and evaluate existing confidence measures and their
variants, from hand-crafted ones to the most recent, state-of-the-art learning
based methods. We study the different behaviors of each measure when applied to
a pool of different stereo algorithms and, for the first time in literature,
when paired with a state-of-the-art deep stereo network. Our experiments,
carried out on five different standard datasets, provide a comprehensive
overview of the field, highlighting in particular both strengths and
limitations of learning-based strategies.
- Abstract(参考訳): ステレオマッチングは、2つの同期画像と修正画像に一致するピクセルの差を見出すことにより、密度深度マップを推定する最も一般的な手法の1つである。
より正確なアルゴリズムの開発とともに、研究コミュニティは信頼性を推定する優れた戦略を見つけることに注力した。
信頼度 推定格差マップ
この情報は、間違った一致をナビゲートし、異なる戦略に従って様々なステレオアルゴリズムの全体的な効果を改善するための強力な手がかりであることが証明されている。
本稿では,ステレオマッチングにおける信頼度推定の分野における10年以上の発展を概観する。
我々は,手作りの手法から最新の最先端の学習手法まで,既存の信頼度尺度とその変種を幅広く議論し,評価する。
本研究では,異なるステレオアルゴリズムのプールに適用した場合と,最先端のディープステレオネットワークと組み合わせる場合とで,各測定値の異なる挙動について検討する。
5つの異なる標準データセットで実施した実験では、分野の概要を概観し、特に学習に基づく戦略の強みと限界を強調した。
関連論文リスト
- Modeling Stereo-Confidence Out of the End-to-End Stereo-Matching Network
via Disparity Plane Sweep [31.261772846687297]
提案手法は, 立体像対の任意のシフトを, 差分マップの対応する量シフトで更新する,という考え方に基づいて構築された。
所望の相違プロファイルと予測された相違プロファイルを比較することで、左右の像のあいまいさのレベルを定量化し、信頼度を測定することができる。
論文 参考訳(メタデータ) (2024-01-22T14:52:08Z) - Multi-Dimensional Ability Diagnosis for Machine Learning Algorithms [88.93372675846123]
本稿では,機械学習アルゴリズム評価のためのタスク非依存評価フレームワークCamillaを提案する。
認識診断の仮定とニューラルネットワークを用いて、各サンプルのアルゴリズム、サンプル、スキル間の複雑な相互作用を学習する。
我々の実験では、カミラはメートル法信頼性、ランクの整合性、ランクの安定性で最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2023-07-14T03:15:56Z) - A Comprehensive Study on Robustness of Image Classification Models:
Benchmarking and Rethinking [54.89987482509155]
ディープニューラルネットワークのロバスト性は、通常、敵の例、共通の腐敗、分散シフトに欠けている。
画像分類タスクにおいてtextbfARES-Bench と呼ばれる総合的なベンチマークロバスト性を確立する。
それに応じてトレーニング設定を設計することにより、新しい最先端の対人ロバスト性を実現する。
論文 参考訳(メタデータ) (2023-02-28T04:26:20Z) - Towards Semi-Supervised Deep Facial Expression Recognition with An
Adaptive Confidence Margin [92.76372026435858]
Ada-CM(Adaptive Confidence Margin)を学習し、ラベルのないすべてのデータを半教師付き深層表情認識に活用する。
すべてのラベルなしサンプルは、信頼スコアと適応的に学習された信頼マージンを比較して、2つのサブセットに分割される。
提案手法は最先端の性能,特に半教師付きベースラインを超越した性能を実現する。
論文 参考訳(メタデータ) (2022-03-23T11:43:29Z) - Reversing the cycle: self-supervised deep stereo through enhanced
monocular distillation [51.714092199995044]
多くの分野において、自己教師付き学習ソリューションは急速に進化し、教師付きアプローチでギャップを埋めている。
本稿では,両者の相互関係を逆転する自己教師型パラダイムを提案する。
深層ステレオネットワークを訓練するために,単分子完備ネットワークを通じて知識を抽出する。
論文 参考訳(メタデータ) (2020-08-17T07:40:22Z) - Self-adapting confidence estimation for stereo [48.56220165347967]
本稿では,ステレオアルゴリズムやネットワークに自己適応的な信頼度推定を可能にする,フレキシブルで軽量なソリューションを提案する。
当社の戦略は,ステレオシステムとのシームレスな統合を可能にするだけでなく,その自己適応能力によって,現場でのアウト・オブ・ザ・ボックス(out-of-the-box)デプロイメントも実現しています。
論文 参考訳(メタデータ) (2020-08-14T16:17:28Z) - On the Synergies between Machine Learning and Binocular Stereo for Depth
Estimation from Images: a Survey [45.08733033427528]
ステレオマッチングは、40年近い研究と研究期間を持つコンピュータビジョンにおいて、最も長く続いている問題の1つである。
単眼画像と双眼画像からの学習に基づく深度推定の分野での最近の研究は、これまでに達成された成果を浮き彫りにしている。
論文 参考訳(メタデータ) (2020-04-18T09:14:08Z) - Uncertainty Estimation for End-To-End Learned Dense Stereo Matching via
Probabilistic Deep Learning [0.0]
重極補正ステレオ画像対からの結合深さと不確実性推定のタスクに対して,新しい確率的ニューラルネットワークを提案する。
ネットワークは、予測毎にパラメータがサンプリングされる確率分布を学習する。
推定深度と不確実性情報の質を3つの異なるデータセットで広範囲に評価する。
論文 参考訳(メタデータ) (2020-02-10T11:27:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。