論文の概要: Privacy Preserving Domain Adaptation for Semantic Segmentation of
Medical Images
- arxiv url: http://arxiv.org/abs/2101.00522v1
- Date: Sat, 2 Jan 2021 22:12:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-13 08:07:21.663614
- Title: Privacy Preserving Domain Adaptation for Semantic Segmentation of
Medical Images
- Title(参考訳): 医療画像の意味セグメンテーションのためのプライバシー保護ドメイン適応
- Authors: Serban Stan, Mohammad Rostami
- Abstract要約: 非教師付きドメイン適応(UDA)は、未ラベルのターゲットドメインデータのみを用いて新しいモダリティにモデルを適用するために提案される。
UDAのアルゴリズムは、ソースドメインデータがアクセスできないプライバシーに制約された設定で開発します。
本稿では,最新の医用画像セマンティックセグメンテーション手法と比較し,アルゴリズムの有効性を示す。
- 参考スコア(独自算出の注目度): 13.693640425403636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks (CNNs) have led to significant improvements in
tasks involving semantic segmentation of images. CNNs are vulnerable in the
area of biomedical image segmentation because of distributional gap between two
source and target domains with different data modalities which leads to domain
shift. Domain shift makes data annotations in new modalities necessary because
models must be retrained from scratch. Unsupervised domain adaptation (UDA) is
proposed to adapt a model to new modalities using solely unlabeled target
domain data. Common UDA algorithms require access to data points in the source
domain which may not be feasible in medical imaging due to privacy concerns. In
this work, we develop an algorithm for UDA in a privacy-constrained setting,
where the source domain data is inaccessible. Our idea is based on encoding the
information from the source samples into a prototypical distribution that is
used as an intermediate distribution for aligning the target domain
distribution with the source domain distribution. We demonstrate the
effectiveness of our algorithm by comparing it to state-of-the-art medical
image semantic segmentation approaches on two medical image semantic
segmentation datasets.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は、画像の意味的セグメンテーションを含むタスクを大幅に改善した。
CNNは、異なるデータモダリティを持つ2つのソースとターゲットドメイン間の分散ギャップがドメインシフトをもたらすため、バイオメディカルイメージセグメンテーションの領域で脆弱である。
ドメインシフトは、モデルをゼロから再トレーニングする必要があるため、新しいモダリティでデータアノテーションを必要とする。
非教師付きドメイン適応(UDA)は、未ラベルのターゲットドメインデータのみを用いて新しいモダリティにモデルを適用するために提案される。
共通のUDAアルゴリズムは、プライバシ上の懸念から医療画像では実現不可能なソースドメインのデータポイントへのアクセスを必要とする。
本研究では,ソースドメインデータがアクセス不能なプライバシ制約設定において,udaのアルゴリズムを開発する。
提案手法は,対象領域分布とソース領域分布を整合させる中間分布として使用される原型分布に,ソースサンプルからの情報を符号化することに基づく。
2つの医用画像意味セグメンテーションデータセットにおける最新の医用画像セグメンテーションアプローチと比較し,本アルゴリズムの有効性を示す。
関連論文リスト
- Cross-Domain Distribution Alignment for Segmentation of Private Unannotated 3D Medical Images [20.206972068340843]
本稿では、この問題を解決するために、新しいソースフリーなUnsupervised Domain Adaptation (UDA) 手法を提案する。
我々のアイデアは、ベースモデルにより、関連するソースドメインの内部的に学習された分布を推定することに基づいている。
我々は,実世界の3D医療データセット上でのSOTA性能を実証した。
論文 参考訳(メタデータ) (2024-10-11T19:28:10Z) - Subject-Based Domain Adaptation for Facial Expression Recognition [51.10374151948157]
ディープラーニングモデルを特定の対象個人に適用することは、難しい表情認識タスクである。
本稿では、FERにおける主観的ドメイン適応のための新しいMSDA手法を提案する。
複数の情報源からの情報を効率的に利用して、ディープFERモデルを単一のターゲット個人に適応させる。
論文 参考訳(メタデータ) (2023-12-09T18:40:37Z) - Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
医用画像セグメンテーションのための2段階のソースフリードメイン適応(SFDA)フレームワークを提案する。
プロトタイプアンコールされた特徴アライメントの段階では,まず,事前学習した画素ワイド分類器の重みを原プロトタイプとして利用する。
そこで,本研究では,目標となる特徴とクラスプロトタイプとの整合性を期待するコストを最小化し,双方向輸送を導入する。
論文 参考訳(メタデータ) (2023-07-19T06:07:12Z) - Unsupervised Model Adaptation for Source-free Segmentation of Medical
Images [15.820660013260584]
教師なし領域適応(Unsupervised domain adapt, UDA)は、対象領域のイメージのラベル付けの必要性に対処するために用いられる。
ほとんどのUDAアプローチは、共有ソース/ターゲット潜在機能空間を作成することで、ターゲットの一般化を保証する。
本稿では,適応時にソースデータにアクセスする必要がなく,患者データのプライバシを維持することができる医用画像分割のためのUDAアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-11-02T01:01:19Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Target and Task specific Source-Free Domain Adaptive Image Segmentation [73.78898054277538]
ソースフリー領域適応画像分割のための2段階のアプローチを提案する。
我々は,高エントロピー領域を抑えつつ,ターゲット固有の擬似ラベルを生成することに注力する。
第2段階では、タスク固有の表現にネットワークを適用することに重点を置いている。
論文 参考訳(メタデータ) (2022-03-29T17:50:22Z) - Unsupervised Domain Adaptation with Semantic Consistency across
Heterogeneous Modalities for MRI Prostate Lesion Segmentation [19.126306953075275]
セマンティック一貫性を促進する2つの新しい損失関数を導入する。
特に,高度な拡散強調画像技術であるVERDICT-MRIの性能向上の課題に対処する。
論文 参考訳(メタデータ) (2021-09-19T17:33:26Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy
Minimisation for Multi-modal Cardiac Image Segmentation [10.417009344120917]
マルチモーダル心臓画像分割のための新しいUDA法を提案する。
提案手法は、逆学習に基づいて、異なる空間におけるソースとターゲットドメイン間のネットワーク特徴を適応する。
本手法はannotated source domainからunannotated target domainへの適応により2つの心データセットで検証した。
論文 参考訳(メタデータ) (2021-03-15T08:59:44Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
ドメイン適応は、あるラベル付きソースドメインと、わずかにラベル付けまたはラベル付けされていないターゲットドメインの間のドメインシフトをブリッジするために、転送可能なモデルを学ぶことを目的としています。
近年のマルチソース領域適応法(MDA)では,ソースとターゲット間の画素レベルのアライメントは考慮されていない。
これらの課題に対処するための新しいMDAフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T21:22:00Z) - Domain Adaptive Medical Image Segmentation via Adversarial Learning of
Disease-Specific Spatial Patterns [6.298270929323396]
複数の領域にまたがる画像セグメンテーション性能を向上させるための教師なしドメイン適応フレームワークを提案する。
我々は,不適切なセグメンテーションパターンを拒絶し,意味情報や境界情報を通じて暗黙的に学習することで,新しいデータに適応するようにアーキテクチャを強制する。
対象領域からのラベルなし画像上でのディープネットワークの再構成により,セグメント化精度が大幅に向上することが実証された。
論文 参考訳(メタデータ) (2020-01-25T13:48:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。