Combining Graph Neural Networks and Spatio-temporal Disease Models to
Predict COVID-19 Cases in Germany
- URL: http://arxiv.org/abs/2101.00661v1
- Date: Sun, 3 Jan 2021 16:39:00 GMT
- Title: Combining Graph Neural Networks and Spatio-temporal Disease Models to
Predict COVID-19 Cases in Germany
- Authors: Cornelius Fritz, Emilio Dorigatti, David R\"ugamer
- Abstract summary: Several experts have called for the necessity to account for human mobility to explain the spread of COVID-19.
Most statistical or epidemiological models cannot directly incorporate unstructured data sources, including data that may encode human mobility.
We propose a trade-off between both research directions and present a novel learning approach that combines the advantages of statistical regression and machine learning models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: During 2020, the infection rate of COVID-19 has been investigated by many
scholars from different research fields. In this context, reliable and
interpretable forecasts of disease incidents are a vital tool for policymakers
to manage healthcare resources. Several experts have called for the necessity
to account for human mobility to explain the spread of COVID-19. Existing
approaches are often applying standard models of the respective research field.
This habit, however, often comes along with certain restrictions. For instance,
most statistical or epidemiological models cannot directly incorporate
unstructured data sources, including relational data that may encode human
mobility. In contrast, machine learning approaches may yield better predictions
by exploiting these data structures, yet lack intuitive interpretability as
they are often categorized as black-box models. We propose a trade-off between
both research directions and present a multimodal learning approach that
combines the advantages of statistical regression and machine learning models
for predicting local COVID-19 cases in Germany. This novel approach enables the
use of a richer collection of data types, including mobility flows and
colocation probabilities, and yields the lowest MSE scores throughout our
observational period in our benchmark study. The results corroborate the
necessity of including mobility data and showcase the flexibility and
interpretability of our approach.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Modeling, Inference, and Prediction in Mobility-Based Compartmental Models for Epidemiology [5.079807662054658]
We introduce individual mobility as a key factor in disease transmission and control.
We characterize disease dynamics using mobility distribution functions for each compartment.
We infer mobility distributions from the time series of the infected population.
arXiv Detail & Related papers (2024-06-17T18:13:57Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Metapopulation Graph Neural Networks: Deep Metapopulation Epidemic
Modeling with Human Mobility [14.587916407752719]
We propose a novel hybrid model called MepoGNN for multi-step multi-region epidemic forecasting.
Our model can not only predict the number of confirmed cases but also explicitly learn the epidemiological parameters.
arXiv Detail & Related papers (2023-06-26T17:09:43Z) - A fairness assessment of mobility-based COVID-19 case prediction models [0.0]
We tested the hypothesis that bias in the mobility data used to train the predictive models might lead to unfairly less accurate predictions for certain demographic groups.
Specifically, the models tend to favor large, highly educated, wealthy young, urban, and non-black-dominated counties.
arXiv Detail & Related papers (2022-10-08T03:43:51Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Modelling COVID-19 Pandemic Dynamics Using Transparent, Interpretable,
Parsimonious and Simulatable (TIPS) Machine Learning Models: A Case Study
from Systems Thinking and System Identification Perspectives [1.4061680807550718]
The present study proposes using systems engineering and system identification approach to build transparent, interpretable, parsimonious and simulatable (TIPS) dynamic machine learning models.
TIPS models are developed based on the well-known NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous inputs) model, which can help better understand the COVID-19 pandemic dynamics.
arXiv Detail & Related papers (2021-11-01T08:42:37Z) - Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
Model of COVID-19 Hospital Trajectories [55.786207368853084]
We address the problem of modeling constrained hospital resources in the midst of the COVID-19 pandemic.
For broad applicability, we focus on the common yet challenging scenario where patient-level data for a region of interest are not available.
We propose an aggregate count explicit-duration hidden Markov model, nicknamed the ACED-HMM, with an interpretable, compact parameterization.
arXiv Detail & Related papers (2021-04-28T15:32:42Z) - DeepCOVIDNet: An Interpretable Deep Learning Model for Predictive
Surveillance of COVID-19 Using Heterogeneous Features and their Interactions [2.30238915794052]
We propose a deep learning model to forecast the range of increase in COVID-19 infected cases in future days.
Using data collected from various sources, we estimate the range of increase in infected cases seven days into the future for all U.S. counties.
arXiv Detail & Related papers (2020-07-31T23:37:38Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.