論文の概要: Fooling Object Detectors: Adversarial Attacks by Half-Neighbor Masks
- arxiv url: http://arxiv.org/abs/2101.00989v1
- Date: Mon, 4 Jan 2021 14:03:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-11 23:00:09.246269
- Title: Fooling Object Detectors: Adversarial Attacks by Half-Neighbor Masks
- Title(参考訳): オブジェクト検出器の摂食:半隣のマスクによる敵攻撃
- Authors: Yanghao Zhang, Fu Wang and Wenjie Ruan
- Abstract要約: 厳密な制約下で異なる種類の検出器を騙すために強い摂動を発生させるハーフナイバーマスク付き投射勾配降下 (hnm-pgd) に基づく攻撃を提案する。
また,提案したHNM-PGD攻撃を,トップ1%にランクインしたCIKM 2020 AnalytiCup Competitionに応用した。
- 参考スコア(独自算出の注目度): 5.266980188239216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although there are a great number of adversarial attacks on deep learning
based classifiers, how to attack object detection systems has been rarely
studied. In this paper, we propose a Half-Neighbor Masked Projected Gradient
Descent (HNM-PGD) based attack, which can generate strong perturbation to fool
different kinds of detectors under strict constraints. We also applied the
proposed HNM-PGD attack in the CIKM 2020 AnalytiCup Competition, which was
ranked within the top 1% on the leaderboard. We release the code at
https://github.com/YanghaoZYH/HNM-PGD.
- Abstract(参考訳): 深層学習に基づく分類器に対する敵攻撃は多数存在するが、対象検出システムへの攻撃方法はほとんど研究されていない。
本稿では,厳密な制約下で異なる種類の検出器を騙すための強い摂動を発生させるハーフナイバーマスク付き投射勾配降下 (hnm-pgd) に基づく攻撃を提案する。
また,提案したHNM-PGD攻撃を,トップ1%にランクインしたCIKM 2020 AnalytiCup Competitionに応用した。
コードをhttps://github.com/YanghaoZYH/HNM-PGDでリリースします。
関連論文リスト
- Any Target Can be Offense: Adversarial Example Generation via Generalized Latent Infection [83.72430401516674]
GAKerは任意のターゲットクラスに対して逆例を構築することができる。
本手法は,未知のクラスに対する攻撃成功率を約14.13%で達成する。
論文 参考訳(メタデータ) (2024-07-17T03:24:09Z) - PRAT: PRofiling Adversarial aTtacks [52.693011665938734]
PRofiling Adversarial aTacks (PRAT) の新たな問題点について紹介する。
敵対的な例として、PRATの目的は、それを生成するのに使用される攻撃を特定することである。
AIDを用いてPRATの目的のための新しいフレームワークを考案する。
論文 参考訳(メタデータ) (2023-09-20T07:42:51Z) - UMD: Unsupervised Model Detection for X2X Backdoor Attacks [16.8197731929139]
バックドア(トロイジャン)攻撃はディープニューラルネットワークに対する一般的な脅威であり、トリガーバックドアに埋め込まれた1つ以上のソースクラスのサンプルは、敵のターゲットクラスに誤って分類される。
本稿では,X2Xのバックドア攻撃を,敵対的(ソース,ターゲット)クラスペアの共役推論によって効果的に検出する教師なしモデル検出手法を提案する。
論文 参考訳(メタデータ) (2023-05-29T23:06:05Z) - Post-Training Detection of Backdoor Attacks for Two-Class and
Multi-Attack Scenarios [22.22337220509128]
バックドア攻撃(BA)は、ディープニューラルネットワーク分類器に対する新たな脅威である。
本稿では,BPリバースエンジニアリングに基づく検出フレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-20T22:21:38Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
Emphbackdoor攻撃は、深層ニューラルネットワーク(DNN)に隠れたバックドアを埋め込み、トレーニングデータに毒を盛ることを目的としている。
我々は,対象ラベルを画像レベルではなくオブジェクトレベルから扱う,新たな攻撃パラダイムであるemphfine-fine-grained attackを提案する。
実験により、提案手法はわずかなトレーニングデータだけを毒殺することでセマンティックセグメンテーションモデルを攻撃することに成功した。
論文 参考訳(メタデータ) (2021-03-06T05:50:29Z) - Composite Adversarial Attacks [57.293211764569996]
敵対攻撃は、機械学習(ML)モデルを欺くための技術です。
本論文では,攻撃アルゴリズムの最適組み合わせを自動的に探索するための複合攻撃法(Composite Adrial Attack,CAA)を提案する。
CAAは11の防衛でトップ10の攻撃を破り、時間の経過は少ない。
論文 参考訳(メタデータ) (2020-12-10T03:21:16Z) - DPAttack: Diffused Patch Attacks against Universal Object Detection [66.026630370248]
対象検出に対する敵対攻撃は、全画素攻撃とパッチ攻撃の2つのカテゴリに分けられる。
小惑星や格子状形状の拡散パッチを用いて物体検出装置を騙すための拡散パッチ攻撃(textbfDPAttack)を提案する。
実験の結果、我々のDPAttackは拡散パッチでほとんどの物体検出器を騙すことに成功した。
論文 参考訳(メタデータ) (2020-10-16T04:48:24Z) - Learning One Class Representations for Face Presentation Attack
Detection using Multi-channel Convolutional Neural Networks [7.665392786787577]
プレゼンテーションアタック検出(PAD)メソッドは、目に見えないアタックを一般化するのに失敗することが多い。
マルチチャネル畳み込みニューラルネットワーク(MCCNN)で学習する一クラス分類器を用いたPADのための新しいフレームワークを提案する。
新たな損失関数が導入されたため、ネットワークは攻撃の表現から遠ざかって、ボナフィドクラスのコンパクトな埋め込みを学習せざるを得なくなった。
提案フレームワークは,ボナフィドおよび(既知の)攻撃クラスから堅牢なPADシステムを学習するための新しいアプローチを導入する。
論文 参考訳(メタデータ) (2020-07-22T14:19:33Z) - Anomaly Detection-Based Unknown Face Presentation Attack Detection [74.4918294453537]
異常検出に基づくスプーフ攻撃検出は、顔提示攻撃検出の最近の進歩である。
本稿では,異常検出に基づくスプーフ攻撃検出のためのディープラーニングソリューションを提案する。
提案手法はCNNの表現学習能力の恩恵を受け,fPADタスクの優れた特徴を学習する。
論文 参考訳(メタデータ) (2020-07-11T21:20:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。