Stochastic Action Prediction for Imitation Learning
- URL: http://arxiv.org/abs/2101.01055v1
- Date: Sat, 26 Dec 2020 08:02:33 GMT
- Title: Stochastic Action Prediction for Imitation Learning
- Authors: Sagar Gubbi Venkatesh and Nihesh Rathod and Shishir Kolathaya and
Bharadwaj Amrutur
- Abstract summary: Imitation learning is a data-driven approach to acquiring skills that relies on expert demonstrations to learn a policy that maps observations to actions.
We demonstrate inherentity in demonstrations collected for tasks including line following with a remote-controlled car.
We find that accounting for adversariality in the expert data leads to substantial improvement in the success rate of task completion.
- Score: 1.6385815610837169
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Imitation learning is a data-driven approach to acquiring skills that relies
on expert demonstrations to learn a policy that maps observations to actions.
When performing demonstrations, experts are not always consistent and might
accomplish the same task in slightly different ways. In this paper, we
demonstrate inherent stochasticity in demonstrations collected for tasks
including line following with a remote-controlled car and manipulation tasks
including reaching, pushing, and picking and placing an object. We model
stochasticity in the data distribution using autoregressive action generation,
generative adversarial nets, and variational prediction and compare the
performance of these approaches. We find that accounting for stochasticity in
the expert data leads to substantial improvement in the success rate of task
completion.
Related papers
- Uniting contrastive and generative learning for event sequences models [51.547576949425604]
This study investigates the integration of two self-supervised learning techniques - instance-wise contrastive learning and a generative approach based on restoring masked events in latent space.
Experiments conducted on several public datasets, focusing on sequence classification and next-event type prediction, show that the integrated method achieves superior performance compared to individual approaches.
arXiv Detail & Related papers (2024-08-19T13:47:17Z) - Zero-shot Imitation Policy via Search in Demonstration Dataset [0.16817021284806563]
Behavioral cloning uses a dataset of demonstrations to learn a policy.
We propose to use latent spaces of pre-trained foundation models to index a demonstration dataset.
Our approach can effectively recover meaningful demonstrations and show human-like behavior of an agent in the Minecraft environment.
arXiv Detail & Related papers (2024-01-29T18:38:29Z) - A Supervised Contrastive Learning Pretrain-Finetune Approach for Time
Series [15.218841180577135]
We introduce a novel pretraining procedure that leverages supervised contrastive learning to distinguish features within each pretraining dataset.
We then propose a fine-tuning procedure designed to enhance the accurate prediction of the target data by aligning it more closely with the learned dynamics of the pretraining datasets.
arXiv Detail & Related papers (2023-11-21T02:06:52Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Inverse Dynamics Pretraining Learns Good Representations for Multitask
Imitation [66.86987509942607]
We evaluate how such a paradigm should be done in imitation learning.
We consider a setting where the pretraining corpus consists of multitask demonstrations.
We argue that inverse dynamics modeling is well-suited to this setting.
arXiv Detail & Related papers (2023-05-26T14:40:46Z) - Reinforcement Learning from Passive Data via Latent Intentions [86.4969514480008]
We show that passive data can still be used to learn features that accelerate downstream RL.
Our approach learns from passive data by modeling intentions.
Our experiments demonstrate the ability to learn from many forms of passive data, including cross-embodiment video data and YouTube videos.
arXiv Detail & Related papers (2023-04-10T17:59:05Z) - Multi-Task Self-Supervised Time-Series Representation Learning [3.31490164885582]
Time-series representation learning can extract representations from data with temporal dynamics and sparse labels.
We propose a new time-series representation learning method by combining the advantages of self-supervised tasks.
We evaluate the proposed framework on three downstream tasks: time-series classification, forecasting, and anomaly detection.
arXiv Detail & Related papers (2023-03-02T07:44:06Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Learning Transferable Motor Skills with Hierarchical Latent Mixture
Policies [37.09286945259353]
We propose an approach to learn abstract motor skills from data using a hierarchical mixture latent variable model.
We demonstrate in manipulation domains that the method can effectively cluster offline data into distinct, executable behaviours.
arXiv Detail & Related papers (2021-12-09T17:37:14Z) - Video Prediction via Example Guidance [156.08546987158616]
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics.
In this work, we propose a simple yet effective framework that can efficiently predict plausible future states.
arXiv Detail & Related papers (2020-07-03T14:57:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.