Stochastic Encodings for Active Feature Acquisition
- URL: http://arxiv.org/abs/2508.01957v3
- Date: Wed, 06 Aug 2025 17:06:54 GMT
- Title: Stochastic Encodings for Active Feature Acquisition
- Authors: Alexander Norcliffe, Changhee Lee, Fergus Imrie, Mihaela van der Schaar, Pietro Lio,
- Abstract summary: Active Feature Acquisition is an instance-wise, sequential decision making problem.<n>The aim is to dynamically select which feature to measure based on current observations, independently for each test instance.<n>Common approaches either use Reinforcement Learning, which experiences training difficulties, or greedily maximize the conditional mutual information of the label and unobserved features, which makes myopic.<n>We introduce a latent variable model, trained in a supervised manner. Acquisitions are made by reasoning about the features across many possible unobserved realizations in a latent space.
- Score: 100.47043816019888
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active Feature Acquisition is an instance-wise, sequential decision making problem. The aim is to dynamically select which feature to measure based on current observations, independently for each test instance. Common approaches either use Reinforcement Learning, which experiences training difficulties, or greedily maximize the conditional mutual information of the label and unobserved features, which makes myopic acquisitions. To address these shortcomings, we introduce a latent variable model, trained in a supervised manner. Acquisitions are made by reasoning about the features across many possible unobserved realizations in a stochastic latent space. Extensive evaluation on a large range of synthetic and real datasets demonstrates that our approach reliably outperforms a diverse set of baselines.
Related papers
- Propensity-driven Uncertainty Learning for Sample Exploration in Source-Free Active Domain Adaptation [19.620523416385346]
Source-free active domain adaptation (SFADA) addresses the challenge of adapting a pre-trained model to new domains without access to source data.<n>This scenario is particularly relevant in real-world applications where data privacy, storage limitations, or labeling costs are significant concerns.<n>We propose the Propensity-driven Uncertainty Learning (ProULearn) framework to effectively select more informative samples without frequently requesting human annotations.
arXiv Detail & Related papers (2025-01-23T10:05:25Z) - Maximally Separated Active Learning [32.98415531556376]
We propose an active learning method that utilizes fixed equiangular hyperspherical points as class prototypes.
We demonstrate strong performance over existing active learning techniques across five benchmark datasets.
arXiv Detail & Related papers (2024-11-26T14:02:43Z) - Leveraging sparse and shared feature activations for disentangled
representation learning [112.22699167017471]
We propose to leverage knowledge extracted from a diversified set of supervised tasks to learn a common disentangled representation.
We validate our approach on six real world distribution shift benchmarks, and different data modalities.
arXiv Detail & Related papers (2023-04-17T01:33:24Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Feature Diversity Learning with Sample Dropout for Unsupervised Domain
Adaptive Person Re-identification [0.0]
This paper proposes a new approach to learn the feature representation with better generalization ability through limiting noisy pseudo labels.
We put forward a brand-new method referred as to Feature Diversity Learning (FDL) under the classic mutual-teaching architecture.
Experimental results show that our proposed FDL-SD achieves the state-of-the-art performance on multiple benchmark datasets.
arXiv Detail & Related papers (2022-01-25T10:10:48Z) - Reliable Shot Identification for Complex Event Detection via
Visual-Semantic Embedding [72.9370352430965]
We propose a visual-semantic guided loss method for event detection in videos.
Motivated by curriculum learning, we introduce a negative elastic regularization term to start training the classifier with instances of high reliability.
An alternative optimization algorithm is developed to solve the proposed challenging non-net regularization problem.
arXiv Detail & Related papers (2021-10-12T11:46:56Z) - Active Learning by Acquiring Contrastive Examples [8.266097781813656]
We propose an acquisition function that opts for selecting textitcontrastive examples, i.e. data points that are similar in the model feature space.
We compare our approach with a diverse set of acquisition functions in four natural language understanding tasks and seven datasets.
arXiv Detail & Related papers (2021-09-08T16:40:18Z) - Stochastic Action Prediction for Imitation Learning [1.6385815610837169]
Imitation learning is a data-driven approach to acquiring skills that relies on expert demonstrations to learn a policy that maps observations to actions.
We demonstrate inherentity in demonstrations collected for tasks including line following with a remote-controlled car.
We find that accounting for adversariality in the expert data leads to substantial improvement in the success rate of task completion.
arXiv Detail & Related papers (2020-12-26T08:02:33Z) - Interactive Weak Supervision: Learning Useful Heuristics for Data
Labeling [19.24454872492008]
Weak supervision offers a promising alternative for producing labeled datasets without ground truth labels.
We develop the first framework for interactive weak supervision in which a method proposes iterations and learns from user feedback.
Our experiments demonstrate that only a small number of feedback are needed to train models that achieve highly competitive test set performance.
arXiv Detail & Related papers (2020-12-11T00:10:38Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.