論文の概要: Understanding Health Misinformation Transmission: An Interpretable Deep
Learning Approach to Manage Infodemics
- arxiv url: http://arxiv.org/abs/2101.01076v1
- Date: Mon, 21 Dec 2020 15:49:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-27 06:45:44.160718
- Title: Understanding Health Misinformation Transmission: An Interpretable Deep
Learning Approach to Manage Infodemics
- Title(参考訳): 健康情報伝達の理解--情報処理における理解可能な深層学習アプローチ
- Authors: Jiaheng Xie, Yidong Chai, Xiao Liu
- Abstract要約: 本研究では,新しい解釈可能な深層学習手法であるGenerative Adversarial NetworkベースのPiecewise Wide and Attention Deep Learning (GAN-PiWAD)を提案する。
社会交換理論に則った特徴を選択し、4,445本の誤報動画でGAN-PiWADを評価します。
本研究は,ソーシャルメディアプラットフォームや政策立案者に対して,誤情報を識別し,伝達を制御し,インフォデミクスを管理するための積極的な介入をデザインする直接的意義を与える。
- 参考スコア(独自算出の注目度): 6.08461198240039
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Health misinformation on social media devastates physical and mental health,
invalidates health gains, and potentially costs lives. Understanding how health
misinformation is transmitted is an urgent goal for researchers, social media
platforms, health sectors, and policymakers to mitigate those ramifications.
Deep learning methods have been deployed to predict the spread of
misinformation. While achieving the state-of-the-art predictive performance,
deep learning methods lack the interpretability due to their blackbox nature.
To remedy this gap, this study proposes a novel interpretable deep learning
approach, Generative Adversarial Network based Piecewise Wide and Attention
Deep Learning (GAN-PiWAD), to predict health misinformation transmission in
social media. Improving upon state-of-the-art interpretable methods, GAN-PiWAD
captures the interactions among multi-modal data, offers unbiased estimation of
the total effect of each feature, and models the dynamic total effect of each
feature when its value varies. We select features according to social exchange
theory and evaluate GAN-PiWAD on 4,445 misinformation videos. The proposed
approach outperformed strong benchmarks. Interpretation of GAN-PiWAD indicates
video description, negative video content, and channel credibility are key
features that drive viral transmission of misinformation. This study
contributes to IS with a novel interpretable deep learning method that is
generalizable to understand other human decision factors. Our findings provide
direct implications for social media platforms and policymakers to design
proactive interventions to identify misinformation, control transmissions, and
manage infodemics.
- Abstract(参考訳): ソーシャルメディア上の健康情報の誤報は、身体的および精神的な健康を破滅させ、健康上の利益を無効化し、潜在的に生命を犠牲にする。
医療情報の伝達方法を理解することは、研究者、ソーシャルメディアプラットフォーム、医療セクター、政策立案者にとって、これらの影響を緩和するための緊急の目標である。
誤情報の拡散を予測するための深層学習手法が展開されている。
最先端の予測性能を達成する一方で、深層学習法はブラックボックスの性質による解釈性を欠いている。
そこで本研究では,新しい解釈可能な深層学習手法であるgenerative adversarial network based piecewise wide and attention deep learning (gan-piwad)を提案する。
最先端の解釈方法の改善により、gan-piwadはマルチモーダルデータ間のインタラクションをキャプチャし、各特徴の総効果を偏りなく推定し、その値が変化すると各特徴の動的総効果をモデル化する。
社会交換理論に基づいて特徴を選定し,4,445個の誤報ビデオ上でGAN-PiWADを評価する。
提案手法は強力なベンチマークを上回った。
GAN-PiWADの解釈は、ビデオ記述、負の映像コンテンツ、チャンネルの信頼性が、誤情報のウイルス感染を引き起こす重要な特徴であることを示している。
本研究は、他の人間の決定要因を理解するために一般化可能な、新しい解釈可能な深層学習手法でISに貢献する。
本研究は,ソーシャルメディアプラットフォームや政策立案者に対して,誤情報を識別し,伝達を制御し,インフォデミクスを管理するための積極的な介入をデザインする直接的意義を与える。
関連論文リスト
- Epidemiology-informed Network for Robust Rumor Detection [59.89351792706995]
本稿では, 疫学知識を統合し, 性能を高めるための新しい疫学情報ネットワーク(EIN)を提案する。
疫学理論をうわさ検出に適応させるため,各利用者が情報源情報に対する姿勢を付加することが期待されている。
実験結果から,提案したEINは実世界のデータセット上で最先端の手法より優れるだけでなく,樹木の深度にまたがる堅牢性も向上することが示された。
論文 参考訳(メタデータ) (2024-11-20T00:43:32Z) - Intervention strategies for misinformation sharing on social media: A bibliometric analysis [1.8020166013859684]
不正確な共有情報は混乱を引き起こし、精神的健康に悪影響を及ぼし、誤報による意思決定につながる。
本研究では,ソーシャルメディア上での誤情報共有に対処するための介入戦略の類型について検討する。
認識ベース、自動化ベース、情報ベース、ハイブリッドベースの4つの重要なクラスタを特定します。
論文 参考訳(メタデータ) (2024-09-26T08:38:15Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
我々はNeuroExplainerと呼ばれる説明可能な幾何学的深層ネットワークを提案する。
NeuroExplainerは、早産に伴う幼児の皮質発達パターンの解明に使用される。
論文 参考訳(メタデータ) (2023-01-01T12:48:12Z) - On Curating Responsible and Representative Healthcare Video
Recommendations for Patient Education and Health Literacy: An Augmented
Intelligence Approach [5.545277272908999]
アメリカの成人の3人に1人がインターネットを使って健康上の懸念を診断し、学んでいる。
健康リテラシーの分割はアルゴリズムの推薦によって悪化する可能性がある。
論文 参考訳(メタデータ) (2022-07-13T01:54:59Z) - Case Study on Detecting COVID-19 Health-Related Misinformation in Social
Media [7.194177427819438]
本稿では、ソーシャルメディアにおける新型コロナウイルスの健康関連誤報を検出するメカニズムについて述べる。
応用機械学習技術を用いて誤情報検出機構に組み込まれた誤情報テーマと関連キーワードを定義した。
本手法は,健康関連誤報と真情報との分類において,少なくとも78%の精度で有望な結果を示す。
論文 参考訳(メタデータ) (2021-06-12T16:26:04Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
ユーザの健康状態の重症度を評価するために,テキストコンテンツとコンテキスト情報の両方をモデル化する多視点学習フレームワークを提案する。
多様なNLUビューは、ユーザの健康を評価するために、タスクと個々の疾患の両方に効果を示す。
論文 参考訳(メタデータ) (2020-09-21T03:45:14Z) - Independent Component Analysis for Trustworthy Cyberspace during High
Impact Events: An Application to Covid-19 [4.629100947762816]
新型コロナウイルス(COVID-19)の感染拡大など、ソーシャルメディアは重要なコミュニケーションチャンネルとなっている。
ソーシャルメディアにおける誤報が急速に拡散し、社会不安を生じさせるため、そのような出来事における誤報の拡散は重要なデータ課題である。
本稿では,ICAモデルに基づくデータ駆動型ソリューションを提案する。
論文 参考訳(メタデータ) (2020-06-01T21:48:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。