論文の概要: Learning to solve the single machine scheduling problem with release
times and sum of completion times
- arxiv url: http://arxiv.org/abs/2101.01082v1
- Date: Mon, 4 Jan 2021 16:40:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-11 22:52:02.555090
- Title: Learning to solve the single machine scheduling problem with release
times and sum of completion times
- Title(参考訳): リリース時間と完了時間の合計による単一マシンスケジューリング問題を解決するための学習
- Authors: Axel Parmentier and Vincent T'Kindt
- Abstract要約: 我々は,機械学習の分野とスケジューリング理論の手法を組み込んだ新しいアルゴリズムによる,ハードシングルマシンスケジューリング問題の解に着目する。
これらは、ハード問題のインスタンスを最適性に解決された単純なインスタンスに変換します。
- 参考スコア(独自算出の注目度): 0.76146285961466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we focus on the solution of a hard single machine scheduling
problem by new heuristic algorithms embedding techniques from machine learning
field and scheduling theory. These heuristics transform an instance of the hard
problem into an instance of a simpler one solved to optimality. The obtained
schedule is then transposed to the original problem. Computational experiments
show that they are competitive with state-of-the-art heuristics, notably on
large instances.
- Abstract(参考訳): 本稿では,機械学習分野とスケジューリング理論による新しいヒューリスティックアルゴリズム埋め込み手法によるハード・シングル・マシンスケジューリング問題の解法に着目する。
これらのヒューリスティックスは、難題のインスタンスを最適性に解決されたより単純なインスタンスに変換する。
得られたスケジュールは元の問題に変換される。
計算実験によれば、それらは最先端のヒューリスティック、特に大規模インスタンスと競合している。
関連論文リスト
- Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
本稿では,量子化と早期出口動的ネットワークを組み合わせたより一般的な動的ネットワークQuEEを提案する。
我々のアルゴリズムは、ソフトアーリーエグジットや入力依存圧縮の一形態と見なすことができる。
提案手法の重要な要素は、さらなる計算によって実現可能な潜在的な精度向上の正確な予測である。
論文 参考訳(メタデータ) (2024-06-20T15:25:13Z) - Deep learning-driven scheduling algorithm for a single machine problem
minimizing the total tardiness [0.0]
単一パススケジューリングアルゴリズムで用いられる基準値の分解時間推定器として機能するディープニューラルネットワークを提案する。
機械学習によるアプローチは、トレーニングフェーズからかなり大きなインスタンスへの情報を効率的に一般化できることを示します。
論文 参考訳(メタデータ) (2024-02-19T15:34:09Z) - Taking the human out of decomposition-based optimization via artificial
intelligence: Part II. Learning to initialize [0.0]
提案手法は解時間を大幅に短縮することができる。
アクティブかつ教師付き学習は、計算性能を予測する代理モデルを学ぶために使用される。
その結果,提案手法が解時間を大幅に短縮する可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-10T23:49:26Z) - An End-to-End Reinforcement Learning Approach for Job-Shop Scheduling
Problems Based on Constraint Programming [5.070542698701157]
本稿では,CPと強化学習(Reinforcement Learning, RL)を用いてスケジューリング問題を解決する新しいエンドツーエンドアプローチを提案する。
当社のアプローチでは,既存のCPソルバを活用して,プライオリティ・ディスパッチ・ルール(PDR)を学ぶエージェントをトレーニングする。
論文 参考訳(メタデータ) (2023-06-09T08:24:56Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - Transformer-based Machine Learning for Fast SAT Solvers and Logic
Synthesis [63.53283025435107]
CNFベースのSATとMaxSATは論理合成と検証システムの中心である。
そこで本研究では,Transformerアーキテクチャから派生したワンショットモデルを用いて,MaxSAT問題の解法を提案する。
論文 参考訳(メタデータ) (2021-07-15T04:47:35Z) - Learning to Schedule Heuristics in Branch-and-Bound [25.79025327341732]
現実世界のアプリケーションは通常、迅速な意思決定を可能にするために、検索の早い段階で優れたソリューションを見つける必要があります。
正確なMIPソルバにおけるスケジューリングのための最初のデータ駆動フレームワークを提案する。
最先端の学術MIPソルバーのデフォルト設定と比較して、挑戦的なインスタンスのクラスで平均プライマリ積分を最大49%削減することができます。
論文 参考訳(メタデータ) (2021-03-18T14:49:52Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
本稿では、強化学習(RL)と従来の運用研究(OR)アルゴリズムを組み合わせた2段階のフレームワークを開発する。
スケジューリング問題は,有限マルコフ決定過程 (MDP) と混合整数計画過程 (mixed-integer programming process) の2段階で解決される。
その結果,本アルゴリズムは,アジャイルな地球観測衛星スケジューリング問題に対して,安定かつ効率的に十分なスケジューリング計画を得ることができた。
論文 参考訳(メタデータ) (2021-03-10T03:16:12Z) - Boosting Data Reduction for the Maximum Weight Independent Set Problem
Using Increasing Transformations [59.84561168501493]
最大重み独立集合問題に対する新しい一般化データ削減および変換規則を導入する。
驚くべきことに、これらのいわゆる増進変換は問題を単純化し、還元空間を開き、アルゴリズムの後にさらに小さな既約グラフが得られる。
提案アルゴリズムは, 1つのインスタンスを除くすべての既約グラフを計算し, 従来よりも多くのインスタンスを最適に解き, 最高の最先端解法よりも最大2桁高速に解き, 解法DynWVCやHILSよりも高品質な解を求める。
論文 参考訳(メタデータ) (2020-08-12T08:52:50Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Metaheuristics for the Online Printing Shop Scheduling Problem [0.0]
この実際のスケジューリング問題は、現代の印刷業界で現れたもので、シークエンシングの柔軟性を備えたフレキシブルなジョブショップスケジューリング問題に対応している。
この問題に対する局所探索戦略とメタヒューリスティックアプローチを提案し,評価した。
フレキシブルなジョブショップスケジューリング問題における古典的事例を用いた数値実験により,本事例に適用した場合,導入手法も競争力を持つことが示された。
論文 参考訳(メタデータ) (2020-06-22T15:38:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。