論文の概要: Dynamic Knowledge Graphs as Semantic Memory Model for Industrial Robots
- arxiv url: http://arxiv.org/abs/2101.01099v2
- Date: Wed, 6 Jan 2021 18:58:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-11 22:51:56.979434
- Title: Dynamic Knowledge Graphs as Semantic Memory Model for Industrial Robots
- Title(参考訳): 産業用ロボットのセマンティック記憶モデルとしての動的知識グラフ
- Authors: Mohak Sukhwani, Vishakh Duggal, Said Zahrai
- Abstract要約: 本稿では,機械が情報や経験を収集し,時間とともにより熟達する意味記憶モデルを提案する。
データのセマンティック分析の後、情報は、自然言語で表現された命令を理解し、必要なタスクを決定論的に実行するために使用される知識グラフに格納される。
- 参考スコア(独自算出の注目度): 0.7863638253070437
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we present a model for semantic memory that allows machines to
collect information and experiences to become more proficient with time. After
a semantic analysis of the data, information is stored in a knowledge graph
which is used to comprehend instructions, expressed in natural language, and
execute the required tasks in a deterministic manner. This imparts industrial
robots cognitive behavior and an intuitive user interface, which is most
appreciated in an era, when collaborative robots are to work alongside humans.
The paper outlines the architecture of the system together with a practical
implementation of the proposal.
- Abstract(参考訳): 本稿では,機械が情報や経験を収集し,時間とともに熟達することを可能にするセマンティックメモリのモデルを提案する。
データのセマンティック分析の後、情報は、自然言語で表現された命令を理解し、必要なタスクを決定論的に実行するために使用される知識グラフに格納される。
これは産業用ロボットの認知行動と直感的なユーザーインターフェースを付与するものであり、協調型ロボットが人間と一緒に働く時代において最も高く評価されている。
本論文は,提案の実用的実装とともに,システムのアーキテクチャを概説する。
関連論文リスト
- Context-Aware Command Understanding for Tabletop Scenarios [1.7082212774297747]
本稿では,テーブルトップシナリオにおける自然人コマンドの解釈を目的とした,新しいハイブリッドアルゴリズムを提案する。
音声、ジェスチャー、シーンコンテキストを含む複数の情報ソースを統合することにより、ロボットに対して実行可能な指示を抽出する。
システムの長所と短所、特にマルチモーダルコマンド解釈の扱い方について論じる。
論文 参考訳(メタデータ) (2024-10-08T20:46:39Z) - Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
微分可能シミュレーションは、システム識別の強力なツールとなっている。
本手法は,オブジェクト自体のデータに頼ることなく,ロボットからの情報を用いてオブジェクト特性を校正する。
低コストなロボットプラットフォームにおける本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-04T20:48:38Z) - Episodic Memory Verbalization using Hierarchical Representations of Life-Long Robot Experience [12.9617156851956]
本研究では,大規模な事前学習モデルを用いて,エピソードデータの短い(数分間の)ストリームを音声化する。
樹状データ構造をエピソードメモリ(EM)から導出し,その低レベルは生の知覚と固有受容のデータを表す。
シミュレーションされた家庭用ロボットデータ,人間中心ビデオ,実世界のロボット記録について評価を行った。
論文 参考訳(メタデータ) (2024-09-26T10:16:08Z) - A Graph-to-Text Approach to Knowledge-Grounded Response Generation in
Human-Robot Interaction [2.3590037806133024]
本稿では,対話状態のグラフベース表現に基づく人間-ロボット間相互作用の新しい対話モデルを提案する。
ユーザの発話に応答するために使用されるニューラルネットワークモデルは、シンプルだが効果的なグラフ・トゥ・テキスト機構に依存している。
提案手法はヒューマノイドロボットを用いたユーザスタディにより実験的に評価される。
論文 参考訳(メタデータ) (2023-11-03T15:44:28Z) - Knowledge Acquisition and Completion for Long-Term Human-Robot
Interactions using Knowledge Graph Embedding [0.0]
本研究では,長期にわたる継続的な学習において,ユーザや環境からデータを収集するアーキテクチャを提案する。
我々は,ロボットの内部表現を段階的に拡張することを目的として,取得した情報を一般化するための知識グラフ埋め込み技術を採用した。
本研究では,学習主体のロボットの能力と,未知の文脈から得られる関係を計測することにより,連続学習アーキテクチャの性能を評価する。
論文 参考訳(メタデータ) (2023-01-17T12:23:40Z) - OG-SGG: Ontology-Guided Scene Graph Generation. A Case Study in Transfer
Learning for Telepresence Robotics [124.08684545010664]
画像からのシーングラフ生成は、ロボット工学のようなアプリケーションに非常に関心を持つタスクである。
オントロジー誘導シーングラフ生成(OG-SGG)と呼ばれるフレームワークの初期近似を提案する。
論文 参考訳(メタデータ) (2022-02-21T13:23:15Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - A Road-map to Robot Task Execution with the Functional Object-Oriented
Network [77.93376696738409]
関数型オブジェクト指向ネットワーク(FOON)はロボットの知識グラフ表現である。
FOONは、二部グラフの形で、ロボットの環境やタスクに対する理解に関係のある象徴的あるいは高レベルな情報を含んでいる。
論文 参考訳(メタデータ) (2021-06-01T00:43:04Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
世界との相互作用から予測モデルを学ぶことで、ロボットのようなエージェントが世界がどのように働くかを学ぶことができる。
しかし、複雑なスキルのダイナミクスを捉えるモデルを学ぶことは大きな課題である。
本研究では,人間などの他のエージェントの観察データを用いて,トレーニングセットを増強する手法を提案する。
論文 参考訳(メタデータ) (2019-12-30T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。