Local Competition and Stochasticity for Adversarial Robustness in Deep
Learning
- URL: http://arxiv.org/abs/2101.01121v2
- Date: Mon, 29 Mar 2021 12:35:02 GMT
- Title: Local Competition and Stochasticity for Adversarial Robustness in Deep
Learning
- Authors: Konstantinos P. Panousis and Sotirios Chatzis and Antonios Alexos and
Sergios Theodoridis
- Abstract summary: This work addresses adversarial robustness in deep learning by considering deep networks with local winner-takes-all activations.
This type of network units result in sparse representations from each model layer, as the units are organized in blocks where only one unit generates a non-zero output.
- Score: 8.023314613846418
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work addresses adversarial robustness in deep learning by considering
deep networks with stochastic local winner-takes-all (LWTA) activations. This
type of network units result in sparse representations from each model layer,
as the units are organized in blocks where only one unit generates a non-zero
output. The main operating principle of the introduced units lies on stochastic
arguments, as the network performs posterior sampling over competing units to
select the winner. We combine these LWTA arguments with tools from the field of
Bayesian non-parametrics, specifically the stick-breaking construction of the
Indian Buffet Process, to allow for inferring the sub-part of each layer that
is essential for modeling the data at hand. Then, inference is performed by
means of stochastic variational Bayes. We perform a thorough experimental
evaluation of our model using benchmark datasets. As we show, our method
achieves high robustness to adversarial perturbations, with state-of-the-art
performance in powerful adversarial attack schemes.
Related papers
- LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.
By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.
Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution.
We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors.
Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler.
arXiv Detail & Related papers (2023-10-10T14:06:56Z) - Robust Transferable Feature Extractors: Learning to Defend Pre-Trained
Networks Against White Box Adversaries [69.53730499849023]
We show that adversarial examples can be successfully transferred to another independently trained model to induce prediction errors.
We propose a deep learning-based pre-processing mechanism, which we refer to as a robust transferable feature extractor (RTFE)
arXiv Detail & Related papers (2022-09-14T21:09:34Z) - Stochastic Deep Networks with Linear Competing Units for Model-Agnostic
Meta-Learning [4.97235247328373]
This work addresses meta-learning (ML) by considering deep networks with local winner-takes-all (LWTA) activations.
This type of network units results in sparse representations from each model layer, as the units are organized into blocks where only one unit generates a non-zero output.
Our approach produces state-of-the-art predictive accuracy on few-shot image classification and regression experiments, as well as reduced predictive error on an active learning setting.
arXiv Detail & Related papers (2022-08-02T16:19:54Z) - Feature Space Particle Inference for Neural Network Ensembles [13.392254060510666]
Particle-based inference methods offer a promising approach from a Bayesian perspective.
We propose optimizing particles in the feature space where the activation of a specific intermediate layer lies.
Our method encourages each member to capture distinct features, which is expected to improve ensemble prediction robustness.
arXiv Detail & Related papers (2022-06-02T09:16:26Z) - Competing Mutual Information Constraints with Stochastic
Competition-based Activations for Learning Diversified Representations [5.981521556433909]
This work aims to address the long-established problem of learning diversified representations.
We combine information-theoretic arguments with competition-based activations.
As we experimentally show, the resulting networks yield significant discnative representation learning abilities.
arXiv Detail & Related papers (2022-01-10T20:12:13Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
This paper proposes a self-ensembling generative adversarial network (SE-GAN) exploiting cross-domain data for semantic segmentation.
In SE-GAN, a teacher network and a student network constitute a self-ensembling model for generating semantic segmentation maps, which together with a discriminator, forms a GAN.
Despite its simplicity, we find SE-GAN can significantly boost the performance of adversarial training and enhance the stability of the model.
arXiv Detail & Related papers (2021-12-15T09:50:25Z) - Ex uno plures: Splitting One Model into an Ensemble of Subnetworks [18.814965334083425]
We propose a strategy to compute an ensemble ofworks, each corresponding to a non-overlapping dropout mask computed via a pruning strategy and trained independently.
We show that the proposed subnetwork ensembling method can perform as well as standard deep ensembles in both accuracy and uncertainty estimates.
We experimentally demonstrate that subnetwork ensembling also consistently outperforms recently proposed approaches that efficiently ensemble neural networks.
arXiv Detail & Related papers (2021-06-09T01:49:49Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z) - Deep Semantic Matching with Foreground Detection and Cycle-Consistency [103.22976097225457]
We address weakly supervised semantic matching based on a deep network.
We explicitly estimate the foreground regions to suppress the effect of background clutter.
We develop cycle-consistent losses to enforce the predicted transformations across multiple images to be geometrically plausible and consistent.
arXiv Detail & Related papers (2020-03-31T22:38:09Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.