論文の概要: High-bandwidth nonlinear control for soft actuators with recursive
network models
- arxiv url: http://arxiv.org/abs/2101.01139v1
- Date: Mon, 4 Jan 2021 18:12:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-12 02:04:57.440054
- Title: High-bandwidth nonlinear control for soft actuators with recursive
network models
- Title(参考訳): 再帰的ネットワークモデルを用いたソフトアクチュエータの高帯域非線形制御
- Authors: Sarah Aguasvivas Manzano, Patricia Xu, Khoi Ly, Robert Shepherd,
Nikolaus Correll
- Abstract要約: 本稿では,Newton-Raphson を用いたソフトアクチュエータの高帯域幅,軽量,非線形出力追跡手法を提案する。
この手法により、従来のRNNモデルと比較してモデルサイズを縮小し、制御ループ周波数を増大させることができる。
- 参考スコア(独自算出の注目度): 1.4174475093445231
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a high-bandwidth, lightweight, and nonlinear output tracking
technique for soft actuators that combines parsimonious recursive layers for
forward output predictions and online optimization using Newton-Raphson. This
technique allows for reduced model sizes and increased control loop frequencies
when compared with conventional RNN models. Experimental results of this
controller prototype on a single soft actuator with soft positional sensors
indicate effective tracking of referenced spatial trajectories and rejection of
mechanical and electromagnetic disturbances. These are evidenced by root mean
squared path tracking errors (RMSE) of 1.8mm using a fully connected (FC)
substructure, 1.62mm using a gated recurrent unit (GRU) and 2.11mm using a long
short term memory (LSTM) unit, all averaged over three tasks. Among these
models, the highest flash memory requirement is 2.22kB enabling co-location of
controller and actuator.
- Abstract(参考訳): 本稿では,前方出力予測とNewton-Raphsonを用いたオンライン最適化のために,擬似再帰層を組み合わせたソフトアクチュエータの高帯域幅,軽量,非線形出力追跡手法を提案する。
この手法により、従来のRNNモデルと比較してモデルサイズを縮小し、制御ループ周波数を増大させることができる。
柔らかい位置センサを備えた単一軟質アクチュエータの試作実験結果から,参照空間軌道の効率的な追跡と機械的・電磁的障害の拒絶が示唆された。
これらは、1.8mmのルート平均2乗経路追跡誤差(RMSE)が完全連結(FC)サブストラクチャを使用しており、1.62mmはゲートリカレントユニット(GRU)を使い、2.11mmは長期メモリ(LSTM)ユニットで、3つのタスクで平均化されている。
これらのモデルの中で最も高いフラッシュメモリ要件は2.22kBであり、コントローラとアクチュエータの同時配置を可能にする。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves [69.9104427437916]
マルチジェネレータ・ウェーブ・エナジー・コンバータ(WEC)は、スプレッド・ウェーブと呼ばれる異なる方向から来る複数の同時波を処理しなければならない。
これらの複雑な装置は、エネルギー捕獲効率、維持を制限する構造的ストレスの低減、高波に対する積極的な保護という複数の目的を持つコントローラを必要とする。
本稿では,システム力学のシーケンシャルな性質をモデル化する上で,ポリシーと批判ネットワークの異なる機能近似について検討する。
論文 参考訳(メタデータ) (2024-04-17T02:04:10Z) - Hysteresis Compensation of Flexible Continuum Manipulator using RGBD Sensing and Temporal Convolutional Network [2.387821008001523]
ケーブル駆動マニピュレータは、摩擦、伸縮、結合などのキャブリング効果によって制御困難に直面している。
本稿では、ディープニューラルネットワーク(DNN)に基づくデータ駆動型アプローチを提案し、これらの非線形および過去の状態依存特性を捉える。
この手法を実際の手術シナリオに適用することで、制御精度を高め、手術性能を向上させることができる。
論文 参考訳(メタデータ) (2024-02-17T16:20:59Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
長期記憶リカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端のニューラルネットワーク言語モデル(NNLM)は非常に複雑になりつつある。
本稿では,LSTM-RNN と Transformer LM の基盤となる不確実性を考慮するために,ベイズ学習フレームワークの全体構造を提案する。
論文 参考訳(メタデータ) (2022-08-28T17:50:19Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z) - Toward smart composites: small-scale, untethered prediction and control
for soft sensor/actuator systems [0.6465251961564604]
組込みマイクロコントローラユニット(MCU)を用いたセンサ/アクチュエータシステムのモデル予測制御のためのアルゴリズムとツールについて述べる。
これらのMCUはセンサーやアクチュエータと組み合わせることで、自律的な動作が可能な新しいタイプのスマートコンポジットを可能にする。
オンラインNewton-Raphson最適化は制御入力を最適化する。
論文 参考訳(メタデータ) (2022-05-22T22:19:09Z) - The self-learning AI controller for adaptive power beaming with
fiber-array laser transmitter system [0.0]
大気乱流下での光ファイバーアレイレーザによる適応型パワービームについて検討する。
本研究では,ターゲットプレーンPVAセンサデータを入力として,ディープニューラルネットワーク(DNN)を用いて最適制御を行う。
論文 参考訳(メタデータ) (2022-04-08T16:24:49Z) - Dynamic Dual Trainable Bounds for Ultra-low Precision Super-Resolution
Networks [82.18396309806577]
動的デュアル・トレーニング・バウンダリ(DDTB)と呼ばれる新しいアクティベーション・量子化器を提案する。
DDTBは超低精度で優れた性能を示した。
例えば、我々のDDTBは、EDSRを2ビットに量子化し、出力画像をx4にスケールアップする場合、Urban100ベンチマークで0.70dBのPSNRアップを達成する。
論文 参考訳(メタデータ) (2022-03-08T04:26:18Z) - An Artificial Neural Network-Based Model Predictive Control for
Three-phase Flying Capacitor Multi-Level Inverter [2.3513645401551333]
モデル予測制御(MPC)は、単純な概念、高速な動的応答、優れた参照追跡のため、パワーエレクトロニクスで広く使われている。
最適なスイッチング状態を予測するためにシステムの数学的モデルに依存するため、パラメトリックな不確実性に悩まされる。
本稿では,ニューラルネットワーク(ANN)に基づくモデルフリー制御戦略を提案する。
論文 参考訳(メタデータ) (2021-10-15T13:54:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。