SoS Degree Reduction with Applications to Clustering and Robust Moment
Estimation
- URL: http://arxiv.org/abs/2101.01509v1
- Date: Tue, 5 Jan 2021 13:49:59 GMT
- Title: SoS Degree Reduction with Applications to Clustering and Robust Moment
Estimation
- Authors: David Steurer, Stefan Tiegel
- Abstract summary: We develop a general framework to significantly reduce the degree of sum-of-square proofs by introducing new variables.
We use it to speed up previous algorithms based on sum-of-squares for two important estimation problems, clustering and robust moment estimation.
- Score: 3.6042575355093907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a general framework to significantly reduce the degree of
sum-of-squares proofs by introducing new variables. To illustrate the power of
this framework, we use it to speed up previous algorithms based on
sum-of-squares for two important estimation problems, clustering and robust
moment estimation. The resulting algorithms offer the same statistical
guarantees as the previous best algorithms but have significantly faster
running times. Roughly speaking, given a sample of $n$ points in dimension $d$,
our algorithms can exploit order-$\ell$ moments in time $d^{O(\ell)}\cdot
n^{O(1)}$, whereas a naive implementation requires time $(d\cdot n)^{O(\ell)}$.
Since for the aforementioned applications, the typical sample size is
$d^{\Theta(\ell)}$, our framework improves running times from $d^{O(\ell^2)}$
to $d^{O(\ell)}$.
Related papers
- Inverting the Leverage Score Gradient: An Efficient Approximate Newton Method [10.742859956268655]
This paper aims to recover the intrinsic model parameters given the leverage scores gradient.
We specifically scrutinize the inversion of the leverage score gradient, denoted as $g(x)$.
arXiv Detail & Related papers (2024-08-21T01:39:42Z) - A Sub-Quadratic Time Algorithm for Robust Sparse Mean Estimation [6.853165736531941]
We study the algorithmic problem of sparse mean estimation in the presence of adversarial outliers.
Our main contribution is an algorithm for robust sparse mean estimation which runs in emphsubquadratic time using $mathrmpoly(k,log d,1/epsilon)$ samples.
arXiv Detail & Related papers (2024-03-07T18:23:51Z) - A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
We present a scalable algorithm for the individually fair ($p$, $k$)-clustering problem introduced by Jung et al. and Mahabadi et al.
A clustering is then called individually fair if it has centers within distance $delta(x)$ of $x$ for each $xin P$.
We show empirically that not only is our algorithm much faster than prior work, but it also produces lower-cost solutions.
arXiv Detail & Related papers (2024-02-09T19:01:48Z) - Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems [61.85150061213987]
We study the generalized low-rank matrix bandit problem, proposed in citelu2021low under the Generalized Linear Model (GLM) framework.
To overcome the computational infeasibility and theoretical restrain of existing algorithms, we first propose the G-ESTT framework.
We show that G-ESTT can achieve the $tildeO(sqrt(d_1+d_2)3/2Mr3/2T)$ bound of regret while G-ESTS can achineve the $tildeO
arXiv Detail & Related papers (2024-01-14T14:14:19Z) - Efficient Algorithms for Generalized Linear Bandits with Heavy-tailed
Rewards [40.99322897009357]
We propose two novel algorithms based on truncation and mean of medians.
Our truncation-based algorithm supports online learning, distinguishing it from existing truncation-based approaches.
Our algorithms improve the regret bounds by a logarithmic factor compared to existing algorithms when $epsilon=1$.
arXiv Detail & Related papers (2023-10-28T13:01:10Z) - Do you know what q-means? [50.045011844765185]
Clustering is one of the most important tools for analysis of large datasets.
We present an improved version of the "$q$-means" algorithm for clustering.
We also present a "dequantized" algorithm for $varepsilon which runs in $Obig(frack2varepsilon2(sqrtkd + log(Nd))big.
arXiv Detail & Related papers (2023-08-18T17:52:12Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Pseudonorm Approachability and Applications to Regret Minimization [73.54127663296906]
We convert high-dimensional $ell_infty$-approachability problems to low-dimensional pseudonorm approachability problems.
We develop an algorithmic theory of pseudonorm approachability, analogous to previous work on approachability for $ell$ and other norms.
arXiv Detail & Related papers (2023-02-03T03:19:14Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - Learning Sparse Classifiers: Continuous and Mixed Integer Optimization
Perspectives [10.291482850329892]
Mixed integer programming (MIP) can be used to solve (to optimality) $ell_0$-regularized regression problems.
We propose two classes of scalable algorithms: an exact algorithm that can handlepapprox 50,000$ features in a few minutes, and approximate algorithms that can address instances with $papprox6$.
In addition, we present new estimation error bounds for $ell$-regularizeds.
arXiv Detail & Related papers (2020-01-17T18:47:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.