Inverting the Leverage Score Gradient: An Efficient Approximate Newton Method
- URL: http://arxiv.org/abs/2408.11267v1
- Date: Wed, 21 Aug 2024 01:39:42 GMT
- Title: Inverting the Leverage Score Gradient: An Efficient Approximate Newton Method
- Authors: Chenyang Li, Zhao Song, Zhaoxing Xu, Junze Yin,
- Abstract summary: This paper aims to recover the intrinsic model parameters given the leverage scores gradient.
We specifically scrutinize the inversion of the leverage score gradient, denoted as $g(x)$.
- Score: 10.742859956268655
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Leverage scores have become essential in statistics and machine learning, aiding regression analysis, randomized matrix computations, and various other tasks. This paper delves into the inverse problem, aiming to recover the intrinsic model parameters given the leverage scores gradient. This endeavor not only enriches the theoretical understanding of models trained with leverage score techniques but also has substantial implications for data privacy and adversarial security. We specifically scrutinize the inversion of the leverage score gradient, denoted as $g(x)$. An innovative iterative algorithm is introduced for the approximate resolution of the regularized least squares problem stated as $\min_{x \in \mathbb{R}^d} 0.5 \|g(x) - c\|_2^2 + 0.5\|\mathrm{diag}(w)Ax\|_2^2$. Our algorithm employs subsampled leverage score distributions to compute an approximate Hessian in each iteration, under standard assumptions, considerably mitigating the time complexity. Given that a total of $T = \log(\| x_0 - x^* \|_2/ \epsilon)$ iterations are required, the cost per iteration is optimized to the order of $O( (\mathrm{nnz}(A) + d^{\omega} ) \cdot \mathrm{poly}(\log(n/\delta))$, where $\mathrm{nnz}(A)$ denotes the number of non-zero entries of $A$.
Related papers
- Implicit High-Order Moment Tensor Estimation and Learning Latent Variable Models [39.33814194788341]
We study the task of learning latent-variable models.
Motivated by such applications, we develop a general efficient algorithm for implicit moment computation.
By leveraging our general algorithm, we obtain the first-time learners for the following models.
arXiv Detail & Related papers (2024-11-23T23:13:24Z) - Sample and Computationally Efficient Robust Learning of Gaussian Single-Index Models [37.42736399673992]
A single-index model (SIM) is a function of the form $sigma(mathbfwast cdot mathbfx)$, where $sigma: mathbbR to mathbbR$ is a known link function and $mathbfwast$ is a hidden unit vector.
We show that a proper learner attains $L2$-error of $O(mathrmOPT)+epsilon$, where $
arXiv Detail & Related papers (2024-11-08T17:10:38Z) - Iterative thresholding for non-linear learning in the strong $\varepsilon$-contamination model [3.309767076331365]
We derive approximation bounds for learning single neuron models using thresholded descent.
We also study the linear regression problem, where $sigma(mathbfx) = mathbfx$.
arXiv Detail & Related papers (2024-09-05T16:59:56Z) - How to Inverting the Leverage Score Distribution? [16.744561210470632]
Despite leverage scores being widely used as a tool, in this paper, we study a novel problem, namely the inverting leverage score.
We use iterative shrinking and the induction hypothesis to ensure global convergence rates for the Newton method.
This important study on inverting statistical leverage opens up numerous new applications in interpretation, data recovery, and security.
arXiv Detail & Related papers (2024-04-21T21:36:42Z) - A Sub-Quadratic Time Algorithm for Robust Sparse Mean Estimation [6.853165736531941]
We study the algorithmic problem of sparse mean estimation in the presence of adversarial outliers.
Our main contribution is an algorithm for robust sparse mean estimation which runs in emphsubquadratic time using $mathrmpoly(k,log d,1/epsilon)$ samples.
arXiv Detail & Related papers (2024-03-07T18:23:51Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
We study the fundamental task of list-decodable mean estimation in high dimensions.
Our algorithm runs in time $widetildeO(ndk)$ for all $k = O(sqrtd) cup Omega(d)$, where $n$ is the size of the dataset.
A variant of our algorithm has runtime $widetildeO(ndk)$ for all $k$, at the expense of an $O(sqrtlog k)$ factor in the recovery guarantee
arXiv Detail & Related papers (2020-11-19T17:21:37Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.