論文の概要: Machine Learning and Quantum Devices
- arxiv url: http://arxiv.org/abs/2101.01759v2
- Date: Wed, 21 Apr 2021 10:14:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-17 19:49:33.714908
- Title: Machine Learning and Quantum Devices
- Title(参考訳): 機械学習と量子デバイス
- Authors: Florian Marquardt
- Abstract要約: 簡単な講義ノートには、ニューラルネットワークとディープラーニングの基礎について書かれている。
講義ノートは、ニューラルネットワークやディープラーニングに関する事前知識のない物理学者を対象としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: These brief lecture notes cover the basics of neural networks and deep
learning as well as their applications in the quantum domain, for physicists
without prior knowledge. In the first part, we describe training using
backpropagation, image classification, convolutional networks and autoencoders.
The second part is about advanced techniques like reinforcement learning (for
discovering control strategies), recurrent neural networks (for analyzing time
traces), and Boltzmann machines (for learning probability distributions). In
the third lecture, we discuss first recent applications to quantum physics,
with an emphasis on quantum information processing machines. Finally, the
fourth lecture is devoted to the promise of using quantum effects to accelerate
machine learning.
- Abstract(参考訳): これらの短い講義ノートは、ニューラルネットワークとディープラーニングの基礎と、事前知識のない物理学者のための量子領域におけるそれらの応用を取り上げている。
まず,バックプロパゲーション,画像分類,畳み込みネットワーク,オートエンコーダを用いたトレーニングについて述べる。
第2の部分は、強化学習(制御戦略の発見)、再帰ニューラルネットワーク(時間トレースの解析)、ボルツマンマシン(確率分布の学習)といった高度な技術に関するものだ。
第3の講義では、量子情報処理マシンを中心に量子物理学への最初の応用について論じる。
最後に、第4回の講義は、量子効果を使って機械学習を加速するという約束に捧げられている。
関連論文リスト
- A Quick Introduction to Quantum Machine Learning for Non-Practitioners [0.0]
この論文では、重ね合わせ、位相空間、絡み合いなど、基本的な量子力学の原理を取り上げている。
また、人工知能、勾配降下、バックプロパゲーションといった古典的なディープラーニングの概念もレビューしている。
量子ニューラルネットワークの潜在的な利点を例に挙げる。
論文 参考訳(メタデータ) (2024-02-22T16:48:17Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Quantum Methods for Neural Networks and Application to Medical Image
Classification [5.817995726696436]
ニューラルネットワークのための新しい量子法を2つ導入する。
1つ目は、量子ピラミッド回路に基づく量子直交ニューラルネットワークである。
第2の方法は量子支援ニューラルネットワークであり、量子コンピュータを用いて内部積推定を行う。
論文 参考訳(メタデータ) (2022-12-14T18:17:19Z) - An Invitation to Distributed Quantum Neural Networks [0.0]
分散量子ニューラルネットワークにおける技術の現状を概観する。
量子データセットの分布は、量子モデルの分布よりも古典的な分布と類似性があることが分かる。
論文 参考訳(メタデータ) (2022-11-14T00:27:01Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Quantum Neural Network Classifiers: A Tutorial [1.4567067583556714]
我々は、パラメータ化量子回路の形で量子ニューラルネットワークに焦点を当てる。
我々は主に、教師付き学習タスクのための量子ニューラルネットワークの異なる構造と符号化戦略について議論する。
Julia言語で記述された量子シミュレーションパッケージであるYoo.jlを使って、パフォーマンスをベンチマークする。
論文 参考訳(メタデータ) (2022-06-06T18:00:01Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
本稿では、教師なし、教師なし、強化学習アルゴリズムにおけるディープラーニングとカーネル手法の使用について述べる。
我々は、微分可能プログラミング、生成モデル、機械学習に対する統計的アプローチ、量子機械学習など、より専門的なトピックについて議論する。
論文 参考訳(メタデータ) (2022-04-08T17:48:59Z) - Mutual Reinforcement between Neural Networks and Quantum Physics [0.0]
量子機械学習は、量子力学と機械学習の共生から生まれる。
古典的な機械学習を量子物理学問題に適用するためのツールとして使う。
量子パーセプトロンの力学に基づく量子ニューラルネットワークの設計と、短絡の断熱への応用は、短時間の動作時間と堅牢な性能をもたらす。
論文 参考訳(メタデータ) (2021-05-27T16:20:50Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。