論文の概要: Environment Transfer for Distributed Systems
- arxiv url: http://arxiv.org/abs/2101.01863v1
- Date: Wed, 6 Jan 2021 04:27:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-11 07:52:25.215442
- Title: Environment Transfer for Distributed Systems
- Title(参考訳): 分散システムのための環境伝達
- Authors: Chunheng Jiang, Jae-wook Ahn, Nirmit Desai
- Abstract要約: 本論文では,音声データ間の音響的風合いの伝達に用いる手法を拡張する手法を提案する。
分散音響データ拡張のための環境間で音声シグネチャを転送する。
本稿では,生成した音響データを分類精度と内容保存に基づいて評価する指標を考案する。
- 参考スコア(独自算出の注目度): 5.8010446129208155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collecting sufficient amount of data that can represent various acoustic
environmental attributes is a critical problem for distributed acoustic machine
learning. Several audio data augmentation techniques have been introduced to
address this problem but they tend to remain in simple manipulation of existing
data and are insufficient to cover the variability of the environments. We
propose a method to extend a technique that has been used for transferring
acoustic style textures between audio data. The method transfers audio
signatures between environments for distributed acoustic data augmentation.
This paper devises metrics to evaluate the generated acoustic data, based on
classification accuracy and content preservation. A series of experiments were
conducted using UrbanSound8K dataset and the results show that the proposed
method generates better audio data with transferred environmental features
while preserving content features.
- Abstract(参考訳): 様々な音響環境特性を表現できる量のデータを集めることは、分散音響機械学習にとって重要な問題である。
この問題に対処するためにいくつかのオーディオデータ拡張技術が導入されたが、既存のデータの単純な操作に留まり、環境の変動をカバーできない傾向にある。
本稿では,音声データ間の音響スタイルのテクスチャの転送に用いられてきた手法を拡張する手法を提案する。
分散音響データ拡張のための環境間で音声シグネチャを転送する。
本稿では,分類精度とコンテンツ保存に基づいて,生成した音響データを評価するメトリクスを考案する。
urbansound8kデータセットを用いて実験を行い,提案手法がコンテンツの特徴を維持しつつ,環境特性を伝達する音声データを生成することを示した。
関連論文リスト
- A Novel Score-CAM based Denoiser for Spectrographic Signature Extraction without Ground Truth [0.0]
本稿では,Score-CAMをベースとした新しいデノイザを開発し,ノイズスペクトルデータからオブジェクトのシグネチャを抽出する。
特に,本論文では,スペクトルトレーニングデータの学習と生成のための,新たな生成逆ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-10-28T21:40:46Z) - Effective Noise-aware Data Simulation for Domain-adaptive Speech Enhancement Leveraging Dynamic Stochastic Perturbation [25.410770364140856]
クロスドメイン音声強調(SE)は、目に見えない対象領域におけるノイズや背景情報の不足により、しばしば深刻な課題に直面している。
本研究では,ノイズ抽出技術とGANを利用した新しいデータシミュレーション手法を提案する。
本研究では,動的摂動の概念を導入し,制御された摂動を推論中の雑音埋め込みに注入する。
論文 参考訳(メタデータ) (2024-09-03T02:29:01Z) - ActiveRIR: Active Audio-Visual Exploration for Acoustic Environment Modeling [57.1025908604556]
環境音響モデルは、室内環境の物理的特性によって音がどのように変換されるかを表す。
本研究では,非マップ環境の環境音響モデルを効率的に構築する新しい課題であるアクティブ音響サンプリングを提案する。
我々は,音声・視覚センサストリームからの情報を利用してエージェントナビゲーションを誘導し,最適な音響データサンプリング位置を決定する強化学習ポリシーであるActiveRIRを紹介する。
論文 参考訳(メタデータ) (2024-04-24T21:30:01Z) - Real Acoustic Fields: An Audio-Visual Room Acoustics Dataset and Benchmark [65.79402756995084]
Real Acoustic Fields (RAF)は、複数のモードから実際の音響室データをキャプチャする新しいデータセットである。
RAFは密集した室内音響データを提供する最初のデータセットである。
論文 参考訳(メタデータ) (2024-03-27T17:59:56Z) - Self-Supervised Visual Acoustic Matching [63.492168778869726]
音響マッチングは、ターゲットの音響環境に録音されたかのように、音声クリップを再合成することを目的としている。
そこで本研究では,対象のシーン画像と音声のみを含む,視覚的音響マッチングのための自己教師型アプローチを提案する。
提案手法は,条件付きGANフレームワークと新しいメトリクスを用いて,室内音響をアンタングル化し,音をターゲット環境に再合成する方法を共同で学習する。
論文 参考訳(メタデータ) (2023-07-27T17:59:59Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
分析や分類に有用な特徴を効率的に抽出する識別機構を備えた生体音響信号分類器を提案する。
タスク指向の現在のバイオ音響認識法とは異なり、提案モデルは入力信号をベクトル部分空間に変換することに依存する。
提案法の有効性は,アヌラン,ミツバチ,蚊の3種の生物音響データを用いて検証した。
論文 参考訳(メタデータ) (2021-03-18T11:01:21Z) - Ensemble of Discriminators for Domain Adaptation in Multiple Sound
Source 2D Localization [7.564344795030588]
本稿では,複数音源の局所化のための領域適応手法の精度を向上させる識別器のアンサンブルを提案する。
このようなデータセットの記録とラベリングは、特にさまざまな音響条件をカバーするために十分な多様性を必要とするため、非常にコストがかかる。
論文 参考訳(メタデータ) (2020-12-10T09:17:29Z) - Cross-domain Adaptation with Discrepancy Minimization for
Text-independent Forensic Speaker Verification [61.54074498090374]
本研究では,複数の音響環境下で収集したCRSS-Forensicsオーディオデータセットを紹介する。
我々は、VoxCelebデータを用いてCNNベースのネットワークを事前訓練し、次に、CRSS-Forensicsのクリーンな音声で高レベルのネットワーク層の一部を微調整するアプローチを示す。
論文 参考訳(メタデータ) (2020-09-05T02:54:33Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
機械学習アルゴリズムは、トレーニング(ソース)とテスト(ターゲット)データの分散のミスマッチの影響を受けやすい。
本研究では,ターゲット領域音響シーンの各周波数帯域の1次及び2次サンプル統計値と,ソース領域学習データセットの1次と2次サンプル統計値との整合性を有する教師なし領域適応手法を提案する。
提案手法は,文献にみられる最先端の教師なし手法よりも,ソース・ドメインの分類精度とターゲット・ドメインの分類精度の両面で優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T23:56:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。