論文の概要: IPLS : A Framework for Decentralized Federated Learning
- arxiv url: http://arxiv.org/abs/2101.01901v1
- Date: Wed, 6 Jan 2021 07:44:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-11 00:01:35.549462
- Title: IPLS : A Framework for Decentralized Federated Learning
- Title(参考訳): IPLS : 分散フェデレーション学習のためのフレームワーク
- Authors: Christodoulos Pappas, Dimitris Chatzopoulos, Spyros Lalis, Manolis
Vavalis
- Abstract要約: IPLSは、惑星間ファイルシステム(IPFS)を部分的にベースとする完全分散型のフェデレーション学習フレームワークです。
IPLSは、参加者数に応じてスケールし、断続接続や動的入場/到着に対して堅牢であり、最小限のリソースを必要とし、トレーニングされたモデルの精度が1000分の1の精度低下を伴う集中FLフレームワークの精度に迅速に収束することを保証する。
- 参考スコア(独自算出の注目度): 6.6271520914941435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of resourceful mobile devices that store rich,
multidimensional and privacy-sensitive user data motivate the design of
federated learning (FL), a machine-learning (ML) paradigm that enables mobile
devices to produce an ML model without sharing their data. However, the
majority of the existing FL frameworks rely on centralized entities. In this
work, we introduce IPLS, a fully decentralized federated learning framework
that is partially based on the interplanetary file system (IPFS). By using IPLS
and connecting into the corresponding private IPFS network, any party can
initiate the training process of an ML model or join an ongoing training
process that has already been started by another party. IPLS scales with the
number of participants, is robust against intermittent connectivity and dynamic
participant departures/arrivals, requires minimal resources, and guarantees
that the accuracy of the trained model quickly converges to that of a
centralized FL framework with an accuracy drop of less than one per thousand.
- Abstract(参考訳): リッチで多次元、プライバシに敏感なユーザデータを格納するリソース豊富なモバイルデバイスの普及は、データを共有することなくMLモデルを作成することができる機械学習(ML)パラダイムであるフェデレーションドラーニング(FL)の設計を動機付けている。
しかし、既存のFLフレームワークの大半は集中型エンティティに依存しています。
本稿では,惑星間ファイルシステム(IPFS)を部分的にベースとした,完全に分散化されたフェデレーション学習フレームワークであるIPLSを紹介する。
IPLSを使用して対応するプライベートIPFSネットワークに接続することで、任意のパーティがMLモデルのトレーニングプロセスを開始するか、すでに他のパーティによって開始されているトレーニングプロセスに参加することができる。
IPLSは、参加者数に応じてスケールし、断続接続や動的入場/到着に対して堅牢であり、最小限のリソースを必要とし、トレーニングされたモデルの精度が1000分の1の精度低下を伴う集中FLフレームワークの精度に迅速に収束することを保証する。
関連論文リスト
- Fedstellar: A Platform for Decentralized Federated Learning [10.014744081331672]
2016年、Googleはフェデレーション(FL)を、フェデレーションの参加者間で機械学習(ML)モデルをトレーニングするための新しいパラダイムとして提案した。
本稿では,Fedstellarについて述べる。Fedstellarは,多種多様なフェデレーションにまたがる分散化・半分散化・集中化方式でFLモデルを学習するためのプラットフォームである。
論文 参考訳(メタデータ) (2023-06-16T10:34:49Z) - Towards More Suitable Personalization in Federated Learning via
Decentralized Partial Model Training [67.67045085186797]
既存のシステムのほとんどは、中央のFLサーバが失敗した場合、大きな通信負荷に直面しなければならない。
共有パラメータと個人パラメータを交互に更新することで、ディープモデルの「右」をパーソナライズする。
共有パラメータアグリゲーションプロセスをさらに促進するために、ローカルシャープネス最小化を統合するDFedを提案する。
論文 参考訳(メタデータ) (2023-05-24T13:52:18Z) - Hierarchical Personalized Federated Learning Over Massive Mobile Edge
Computing Networks [95.39148209543175]
大規模MECネットワーク上でPFLをデプロイするアルゴリズムである階層型PFL(HPFL)を提案する。
HPFLは、最適帯域割り当てを共同で決定しながら、トレーニング損失最小化とラウンドレイテンシ最小化の目的を組み合わせる。
論文 参考訳(メタデータ) (2023-03-19T06:00:05Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - Enhanced Decentralized Federated Learning based on Consensus in
Connected Vehicles [14.80476265018825]
分散システムにおける機械学習(ML)モデルをトレーニングするための新しいパラダイムとして、フェデレートラーニング(FL)が登場している。
我々は,C-DFL (Consensus based Decentralized Federated Learning)を導入し,コネクテッドカーにおけるフェデレーションラーニングに取り組む。
論文 参考訳(メタデータ) (2022-09-22T01:21:23Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
協調エッジ学習(CE-FL)は、分散機械学習アーキテクチャである。
CE-FLの過程をモデル化し,分析訓練を行った。
実世界のテストベッドから収集したデータを用いて,本フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2022-03-26T00:41:57Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Advancements of federated learning towards privacy preservation: from
federated learning to split learning [1.3700362496838854]
分散コラボレーティブ機械学習(DCML)パラダイムにおいて、フェデレーテッド・ラーニング(FL)は、健康、金融、業界 4.0 やスマート車といった最新のイノベーションの応用により、最近多くの注目を集めた。
現実的なシナリオでは、すべてのクライアントは十分なコンピューティングリソース(例えばモノのインターネット)を持っておらず、機械学習モデルには数百万のパラメータがあり、サーバとクライアントの間のプライバシは主要な関心事である。
近年、FLとSLのハイブリッドであるスプリット・ラーニングを導入し、FL(より速いトレーニング/テスト時間)とSL(モデル分割時間)の両方の利点を高めている。
論文 参考訳(メタデータ) (2020-11-25T05:01:33Z) - Federated Learning with Cooperating Devices: A Consensus Approach for
Massive IoT Networks [8.456633924613456]
分散システムにおける機械学習モデルをトレーニングするための新しいパラダイムとして、フェデレートラーニング(FL)が登場している。
提案するFLアルゴリズムは,ネットワーク内のデータ操作を行うデバイスとの協調を利用して,完全に分散された(あるいはサーバレス)学習手法を提案する。
このアプローチは、分散接続とコンピューティングを特徴とするネットワークを超えて、5G 内で FL を統合するための基盤となる。
論文 参考訳(メタデータ) (2019-12-27T15:16:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。