論文の概要: Comparing Classification Models on Kepler Data
- arxiv url: http://arxiv.org/abs/2101.01904v2
- Date: Thu, 7 Jan 2021 04:11:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-11 06:07:35.098068
- Title: Comparing Classification Models on Kepler Data
- Title(参考訳): ケプラーデータの分類モデルの比較
- Authors: Rohan Saha
- Abstract要約: ケプラーの最初のミッションは機械的な故障で終了したが、ケプラー衛星はデータを収集し続けている。
分類モデルを用いて、外惑星が持つ特徴を理解し、それらの特徴を使ってさらなる調査を行うことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Even though the original Kepler mission ended due to mechanical failures, the
Kepler satellite continues to collect data. Using classification models, we can
understand the features exoplanets possess and then use those features to
investigate further for any more information on the candidate planet. Based on
the classification model, the idea is to find out the probability of the planet
under observation being a candidate for an exoplanet or a false positive. If
the model predicts that the observation is a candidate for being an exoplanet,
then the further investigation can be conducted. From the model, we can narrow
down the features that might explain the difference between a candidate and a
false-positive which ultimately helps us to increase the efficiency of any
model and fine-tune the model and ultimately the process of searching for any
future exoplanets. The model comparison is supported by McNemar's test for
checking significance.
- Abstract(参考訳): ケプラーの最初のミッションは機械的な故障で終了したが、ケプラー衛星はデータを収集し続けている。
分類モデルを用いて、外惑星が持つ特徴を理解し、それらの特徴を使用して、候補惑星に関するさらなる情報を調べることができる。
分類モデルに基づいて、観測中の惑星の確率を外惑星候補または偽陽性候補として求める。
モデルが観測が太陽系外惑星の候補であると予測した場合、さらなる調査を行うことができる。
モデルから、候補と偽陽性の違いを説明するような特徴を絞り込み、最終的にはモデルの効率を高め、モデルを微調整し、最終的には将来の太陽系外惑星を探索するプロセスに役立つ。
モデルの比較は、重要度をチェックするMcNemarのテストによってサポートされている。
関連論文リスト
- Confidence-Based Model Selection: When to Take Shortcuts for
Subpopulation Shifts [119.22672589020394]
モデル信頼度がモデル選択を効果的に導くことができるConfidence-based Model Selection (CosMoS)を提案する。
我々はCosMoSを,データ分散シフトのレベルが異なる複数のテストセットを持つ4つのデータセットで評価した。
論文 参考訳(メタデータ) (2023-06-19T18:48:15Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - Revisiting mass-radius relationships for exoplanet populations: a
machine learning insight [0.0]
我々は効率的な機械学習手法を用いて、762個の太陽系外惑星と8個の太陽系外惑星からなるデータセットを解析した。
異なる教師なしクラスタリングアルゴリズムを適用することで、データを「小さい」惑星と「巨大な」惑星の2つの分類に分類する。
我々の分析は、惑星の質量、軌道周期、恒星質量が太陽系外惑星半径を予測する重要な役割を担っていることを強調している。
論文 参考訳(メタデータ) (2023-01-17T19:15:06Z) - Predictive World Models from Real-World Partial Observations [66.80340484148931]
本研究では,現実の道路環境に対する確率論的予測世界モデル学習のためのフレームワークを提案する。
従来の手法では、学習のための基礎的真理として完全状態を必要とするが、HVAEが部分的に観察された状態のみから完全状態を予測することを学べる新しい逐次訓練法を提案する。
論文 参考訳(メタデータ) (2023-01-12T02:07:26Z) - Spuriosity Rankings: Sorting Data to Measure and Mitigate Biases [62.54519787811138]
本稿では,突発的手がかりに依存したモデルバイアスを簡易かつ効果的に測定・緩和する手法を提案する。
我々は,解釈可能なネットワークの深部神経的特徴をベースとして,それらのクラス内の画像のランク付けを行う。
以上の結果から,素早い特徴依存によるモデルバイアスは,モデルがどのようにトレーニングされたかよりも,モデルがトレーニングされていることの影響がはるかに大きいことが示唆された。
論文 参考訳(メタデータ) (2022-12-05T23:15:43Z) - Locating Hidden Exoplanets in ALMA Data Using Machine Learning [10.316742952272394]
機械学習が惑星の存在を迅速かつ正確に検出できることを実証する。
我々はシミュレーションから生成された合成画像に基づいてモデルを訓練し、実際の観測に応用して、実際の系における形成惑星を同定する。
論文 参考訳(メタデータ) (2022-11-17T14:02:16Z) - Automation Of Transiting Exoplanet Detection, Identification and
Habitability Assessment Using Machine Learning Approaches [0.0]
我々はケプラー望遠鏡で捉えた恒星からの光強度曲線を分析し、惑星系の存在の性質を示すポテンシャル曲線を検出する。
我々は、いくつかの最先端機械学習とアンサンブルアプローチを活用することで、外惑星識別と居住可能性判定の自動化に取り組む。
論文 参考訳(メタデータ) (2021-12-06T19:00:12Z) - Exoplanet atmosphere evolution: emulation with random forests [0.0]
大気の質量損失は、小さな、密接な太陽系外惑星の人口動態を彫刻する上で重要な役割を果たしている。
我々は、ある惑星の最終半径と大気の質量を予測するために、大気の進化モデルに基づいて訓練されたランダムな森林を実装する。
我々の新しいアプローチは、人口統計学で使われている高度に洗練された大気進化モデルへの扉を開く。
論文 参考訳(メタデータ) (2021-10-28T14:39:19Z) - On planetary systems as ordered sequences [7.216830424040808]
我々は、3277の惑星系における4286個のケプラー惑星の構成(または順序付け)にどのような情報が属するかを考える。
我々は、主星の性質に基づいて、惑星の半径と周期を予測するためにニューラルネットワークモデルを訓練する。
我々は、計算言語学において、教師なしの音声タグ付けに使用されるモデルを適用し、惑星や惑星系が、物理的に解釈可能な「文法規則」を持つ自然カテゴリーに該当するかどうかを調査する。
論文 参考訳(メタデータ) (2021-05-20T18:00:29Z) - Latent World Models For Intrinsically Motivated Exploration [140.21871701134626]
画像に基づく観察のための自己教師付き表現学習法を提案する。
我々は、部分的に観測可能な環境の探索を導くために、エピソードおよび寿命の不確実性を考慮する。
論文 参考訳(メタデータ) (2020-10-05T19:47:04Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
因果発見は人間の認知の中心にある。
本研究では,ビデオの因果発見の課題を,地層構造を監督せずにエンドツーエンドで検討する。
論文 参考訳(メタデータ) (2020-07-01T17:29:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。