Multi-object Tracking with a Hierarchical Single-branch Network
- URL: http://arxiv.org/abs/2101.01984v1
- Date: Wed, 6 Jan 2021 12:14:58 GMT
- Title: Multi-object Tracking with a Hierarchical Single-branch Network
- Authors: Fan Wang, Lei Luo, En Zhu, Siwei Wang, Jun Long
- Abstract summary: We propose an online multi-object tracking framework based on a hierarchical single-branch network.
Our novel iHOIM loss function unifies the objectives of the two sub-tasks and encourages better detection performance.
Experimental results on MOT16 and MOT20 datasets show that we can achieve state-of-the-art tracking performance.
- Score: 31.680667324595557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent Multiple Object Tracking (MOT) methods have gradually attempted to
integrate object detection and instance re-identification (Re-ID) into a united
network to form a one-stage solution. Typically, these methods use two
separated branches within a single network to accomplish detection and Re-ID
respectively without studying the inter-relationship between them, which
inevitably impedes the tracking performance. In this paper, we propose an
online multi-object tracking framework based on a hierarchical single-branch
network to solve this problem. Specifically, the proposed single-branch network
utilizes an improved Hierarchical Online In-stance Matching (iHOIM) loss to
explicitly model the inter-relationship between object detection and Re-ID. Our
novel iHOIM loss function unifies the objectives of the two sub-tasks and
encourages better detection performance and feature learning even in extremely
crowded scenes. Moreover, we propose to introduce the object positions,
predicted by a motion model, as region proposals for subsequent object
detection, where the intuition is that detection results and motion predictions
can complement each other in different scenarios. Experimental results on MOT16
and MOT20 datasets show that we can achieve state-of-the-art tracking
performance, and the ablation study verifies the effectiveness of each proposed
component.
Related papers
- Uncertainty-Guided Appearance-Motion Association Network for Out-of-Distribution Action Detection [4.938957922033169]
Out-of-distribution (OOD) detection targets to detect and reject test samples with semantic shifts.
We propose a novel Uncertainty-Guided Appearance-Motion Association Network (UAAN)
We show that UAAN beats state-of-the-art methods by a significant margin, illustrating its effectiveness.
arXiv Detail & Related papers (2024-09-16T02:53:49Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
We propose a simple yet effective two-stage feature learning paradigm to jointly learn single-shot and multi-shot features for different targets.
Our method has achieved significant improvements on MOT17 and MOT20 datasets while reaching state-of-the-art performance on DanceTrack dataset.
arXiv Detail & Related papers (2023-11-17T08:17:49Z) - Occlusion-Aware Detection and Re-ID Calibrated Network for Multi-Object
Tracking [38.36872739816151]
Occlusion-Aware Attention (OAA) module in the detector highlights the object features while suppressing the occluded background regions.
OAA can serve as a modulator that enhances the detector for some potentially occluded objects.
We design a Re-ID embedding matching block based on the optimal transport problem.
arXiv Detail & Related papers (2023-08-30T06:56:53Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - Transformer-based assignment decision network for multiple object
tracking [0.0]
We introduce Transformer-based Assignment Decision Network (TADN) that tackles data association without the need of explicit optimization during inference.
Our proposed approach outperforms the state-of-the-art in most evaluation metrics despite its simple nature as a tracker.
arXiv Detail & Related papers (2022-08-06T19:47:32Z) - Exploiting Domain Transferability for Collaborative Inter-level Domain
Adaptive Object Detection [17.61278045720336]
Domain adaptation for object detection (DAOD) has recently drawn much attention owing to its capability of detecting target objects without any annotations.
Previous works focus on aligning features extracted from partial levels in a two-stage detector via adversarial training.
We introduce a novel framework for ProposalD with three proposed components: Multi-scale-aware Uncertainty Attention (MUA), Transferable Region Network (TRPN), and Dynamic Instance Sampling (DIS)
arXiv Detail & Related papers (2022-07-20T01:50:26Z) - Correlation-Aware Deep Tracking [83.51092789908677]
We propose a novel target-dependent feature network inspired by the self-/cross-attention scheme.
Our network deeply embeds cross-image feature correlation in multiple layers of the feature network.
Our model can be flexibly pre-trained on abundant unpaired images, leading to notably faster convergence than the existing methods.
arXiv Detail & Related papers (2022-03-03T11:53:54Z) - Benchmarking Deep Models for Salient Object Detection [67.07247772280212]
We construct a general SALient Object Detection (SALOD) benchmark to conduct a comprehensive comparison among several representative SOD methods.
In the above experiments, we find that existing loss functions usually specialized in some metrics but reported inferior results on the others.
We propose a novel Edge-Aware (EA) loss that promotes deep networks to learn more discriminative features by integrating both pixel- and image-level supervision signals.
arXiv Detail & Related papers (2022-02-07T03:43:16Z) - Target-Aware Object Discovery and Association for Unsupervised Video
Multi-Object Segmentation [79.6596425920849]
This paper addresses the task of unsupervised video multi-object segmentation.
We introduce a novel approach for more accurate and efficient unseen-temporal segmentation.
We evaluate the proposed approach on DAVIS$_17$ and YouTube-VIS, and the results demonstrate that it outperforms state-of-the-art methods both in segmentation accuracy and inference speed.
arXiv Detail & Related papers (2021-04-10T14:39:44Z) - Modulating Localization and Classification for Harmonized Object
Detection [40.82723262074911]
We propose a mutual learning framework to modulate the two tasks.
In particular, the two tasks are forced to learn from each other with a novel mutual labeling strategy.
We achieve a significant performance gain over the baseline detectors on the COCO dataset.
arXiv Detail & Related papers (2021-03-16T10:36:02Z) - Decoupled and Memory-Reinforced Networks: Towards Effective Feature
Learning for One-Step Person Search [65.51181219410763]
One-step methods have been developed to handle pedestrian detection and identification sub-tasks using a single network.
There are two major challenges in the current one-step approaches.
We propose a decoupled and memory-reinforced network (DMRNet) to overcome these problems.
arXiv Detail & Related papers (2021-02-22T06:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.