Transformer-based assignment decision network for multiple object
tracking
- URL: http://arxiv.org/abs/2208.03571v1
- Date: Sat, 6 Aug 2022 19:47:32 GMT
- Title: Transformer-based assignment decision network for multiple object
tracking
- Authors: Athena Psalta, Vasileios Tsironis and Konstantinos Karantzalos
- Abstract summary: We introduce Transformer-based Assignment Decision Network (TADN) that tackles data association without the need of explicit optimization during inference.
Our proposed approach outperforms the state-of-the-art in most evaluation metrics despite its simple nature as a tracker.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data association is a crucial component for any multiple object tracking
(MOT) method that follows the tracking-by-detection paradigm. To generate
complete trajectories such methods employ a data association process to
establish assignments between detections and existing targets during each
timestep. Recent data association approaches try to solve a multi-dimensional
linear assignment task or a network flow minimization problem or either tackle
it via multiple hypotheses tracking. However, during inference an optimization
step that computes optimal assignments is required for every sequence frame
adding significant computational complexity in any given solution. To this end,
in the context of this work we introduce Transformer-based Assignment Decision
Network (TADN) that tackles data association without the need of any explicit
optimization during inference. In particular, TADN can directly infer
assignment pairs between detections and active targets in a single forward pass
of the network. We have integrated TADN in a rather simple MOT framework, we
designed a novel training strategy for efficient end-to-end training and
demonstrate the high potential of our approach for online visual
tracking-by-detection MOT on two popular benchmarks, i.e. MOT17 and UA-DETRAC.
Our proposed approach outperforms the state-of-the-art in most evaluation
metrics despite its simple nature as a tracker which lacks significant
auxiliary components such as occlusion handling or re-identification. The
implementation of our method is publicly available at
https://github.com/psaltaath/tadn-mot.
Related papers
- SparseTrack: Multi-Object Tracking by Performing Scene Decomposition
based on Pseudo-Depth [84.64121608109087]
We propose a pseudo-depth estimation method for obtaining the relative depth of targets from 2D images.
Secondly, we design a depth cascading matching (DCM) algorithm, which can use the obtained depth information to convert a dense target set into multiple sparse target subsets.
By integrating the pseudo-depth method and the DCM strategy into the data association process, we propose a new tracker, called SparseTrack.
arXiv Detail & Related papers (2023-06-08T14:36:10Z) - S$^3$Track: Self-supervised Tracking with Soft Assignment Flow [45.77333923477176]
We study self-supervised multiple object tracking without using any video-level association labels.
We propose differentiable soft object assignment for object association.
We evaluate our proposed model on the KITTI, nuScenes, and Argoverse datasets.
arXiv Detail & Related papers (2023-05-17T06:25:40Z) - Sparse Message Passing Network with Feature Integration for Online
Multiple Object Tracking [6.510588721127479]
Experimental results demonstrate that a simple online MPN with these two contributions can perform better than many state-of-the-art methods.
Our association method generalizes well and can also improve the results of private detection based methods.
arXiv Detail & Related papers (2022-12-06T14:10:57Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - Decoupled and Memory-Reinforced Networks: Towards Effective Feature
Learning for One-Step Person Search [65.51181219410763]
One-step methods have been developed to handle pedestrian detection and identification sub-tasks using a single network.
There are two major challenges in the current one-step approaches.
We propose a decoupled and memory-reinforced network (DMRNet) to overcome these problems.
arXiv Detail & Related papers (2021-02-22T06:19:45Z) - Multi-object Tracking with a Hierarchical Single-branch Network [31.680667324595557]
We propose an online multi-object tracking framework based on a hierarchical single-branch network.
Our novel iHOIM loss function unifies the objectives of the two sub-tasks and encourages better detection performance.
Experimental results on MOT16 and MOT20 datasets show that we can achieve state-of-the-art tracking performance.
arXiv Detail & Related papers (2021-01-06T12:14:58Z) - MOPS-Net: A Matrix Optimization-driven Network forTask-Oriented 3D Point
Cloud Downsampling [86.42733428762513]
MOPS-Net is a novel interpretable deep learning-based method for matrix optimization.
We show that MOPS-Net can achieve favorable performance against state-of-the-art deep learning-based methods over various tasks.
arXiv Detail & Related papers (2020-05-01T14:01:53Z) - FairMOT: On the Fairness of Detection and Re-Identification in Multiple
Object Tracking [92.48078680697311]
Multi-object tracking (MOT) is an important problem in computer vision.
We present a simple yet effective approach termed as FairMOT based on the anchor-free object detection architecture CenterNet.
The approach achieves high accuracy for both detection and tracking.
arXiv Detail & Related papers (2020-04-04T08:18:00Z) - A Unified Object Motion and Affinity Model for Online Multi-Object
Tracking [127.5229859255719]
We propose a novel MOT framework that unifies object motion and affinity model into a single network, named UMA.
UMA integrates single object tracking and metric learning into a unified triplet network by means of multi-task learning.
We equip our model with a task-specific attention module, which is used to boost task-aware feature learning.
arXiv Detail & Related papers (2020-03-25T09:36:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.