論文の概要: Controlling Synthetic Characters in Simulations: A Case for Cognitive
Architectures and Sigma
- arxiv url: http://arxiv.org/abs/2101.02231v1
- Date: Wed, 6 Jan 2021 19:07:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-11 00:16:18.844053
- Title: Controlling Synthetic Characters in Simulations: A Case for Cognitive
Architectures and Sigma
- Title(参考訳): シミュレーションにおける合成文字の制御:認知アーキテクチャとシグマの場合
- Authors: Volkan Ustun, Paul S. Rosenbloom, Seyed Sajjadi, Jeremy Nuttal
- Abstract要約: シミュレーションは、参加する合成文字に対して現実的で信頼できる振る舞いを生成する知性の計算モデルを必要とする。
Sigmaは認知アーキテクチャとシステムであり、象徴的認知アーキテクチャ、確率的グラフィカルモデル、そしてより最近のニューラルモデルに関する40年間にわたる独立した研究から学んだことを、そのグラフィカルアーキテクチャ仮説の下で組み合わせようとしている。
本稿では,Sigmaを多種多様な機能とともに導入し,その組み合わせを強調するために3つの概念実証Sigmaモデルを使用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulations, along with other similar applications like virtual worlds and
video games, require computational models of intelligence that generate
realistic and credible behavior for the participating synthetic characters.
Cognitive architectures, which are models of the fixed structure underlying
intelligent behavior in both natural and artificial systems, provide a
conceptually valid common basis, as evidenced by the current efforts towards a
standard model of the mind, to generate human-like intelligent behavior for
these synthetic characters. Sigma is a cognitive architecture and system that
strives to combine what has been learned from four decades of independent work
on symbolic cognitive architectures, probabilistic graphical models, and more
recently neural models, under its graphical architecture hypothesis. Sigma
leverages an extended form of factor graphs towards a uniform grand unification
of not only traditional cognitive capabilities but also key non-cognitive
aspects, creating unique opportunities for the construction of new kinds of
cognitive models that possess a Theory-of-Mind and that are perceptual,
autonomous, interactive, affective, and adaptive. In this paper, we will
introduce Sigma along with its diverse capabilities and then use three distinct
proof-of-concept Sigma models to highlight combinations of these capabilities:
(1) Distributional reinforcement learning models in; (2) A pair of adaptive and
interactive agent models that demonstrate rule-based, probabilistic, and social
reasoning; and (3) A knowledge-free exploration model in which an agent
leverages only architectural appraisal variables, namely attention and
curiosity, to locate an item while building up a map in a Unity environment.
- Abstract(参考訳): シミュレーションは、仮想世界やビデオゲームのような類似のアプリケーションと同様に、相互作用する合成文字に対して現実的で信頼できる振る舞いを生成する知性の計算モデルを必要とする。
認知的アーキテクチャ(cognitive architecture)は、自然系と人工系の両方における知的行動の基盤となる固定された構造のモデルであり、心の標準的なモデルに向けた現在の取り組みで証明されているように、概念的に有効な共通基盤を提供し、これらの合成文字に対して人間のような知的行動を生成する。
Sigmaは認知アーキテクチャとシステムであり、象徴的認知アーキテクチャ、確率的グラフィカルモデル、そしてより最近のニューラルモデルに関する40年間にわたる独立した研究から学んだことを、グラフィカルアーキテクチャ仮説の下で組み合わせようとしている。
シグマは、従来の認知能力だけでなく、重要な非認知的側面の統一化に向けて、因子グラフの拡張形式を活用し、認知的、自律的、対話的、感情的、適応的な新しい種類の認知モデルを構築するためのユニークな機会を生み出している。
In this paper, we will introduce Sigma along with its diverse capabilities and then use three distinct proof-of-concept Sigma models to highlight combinations of these capabilities: (1) Distributional reinforcement learning models in; (2) A pair of adaptive and interactive agent models that demonstrate rule-based, probabilistic, and social reasoning; and (3) A knowledge-free exploration model in which an agent leverages only architectural appraisal variables, namely attention and curiosity, to locate an item while building up a map in a Unity environment.
関連論文リスト
- A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
我々は,思考の確率的言語(PLoT)に似た認知過程をモデル化するために,アトラクタダイナミクスを記号表現と統合した新しいニューラルシステムモデルを導入する。
我々のモデルは、連続表現空間を、事前定義されたプリミティブに頼るのではなく、教師なし学習を通じて、記号系の意味性と構成性の特徴を反映する、記号列に対応する引き付け状態を持つ離散盆地に分割する。
このアプローチは、認知操作の複雑な双対性を反映したより包括的なモデルを提供する、AIにおける表現力の証明された神経弁別可能な基質であるニューラルダイナミクスを通じて、シンボル処理とサブシンボル処理の両方を統合する統一的なフレームワークを確立する。
論文 参考訳(メタデータ) (2023-10-03T05:40:56Z) - Synergistic Integration of Large Language Models and Cognitive
Architectures for Robust AI: An Exploratory Analysis [12.9222727028798]
本稿では、知的行動を示す人工知能エージェントの開発に使用される2つのAIサブセクタの統合について考察する:大規模言語モデル(LLM)と認知アーキテクチャ(CA)である。
我々は3つの統合的アプローチを提案し、それぞれ理論モデルに基づいて、予備的な経験的証拠によって支持される。
これらのアプローチは、LSMとCAの長所を活用すると同時に、弱点を軽減し、より堅牢なAIシステムの開発を促進することを目的としている。
論文 参考訳(メタデータ) (2023-08-18T21:42:47Z) - Kernel Based Cognitive Architecture for Autonomous Agents [91.3755431537592]
本稿では,認知機能構築への進化的アプローチについて考察する。
本稿では,シンボル創発問題に基づくエージェントの進化を保証する認知アーキテクチャについて考察する。
論文 参考訳(メタデータ) (2022-07-02T12:41:32Z) - CogNGen: Constructing the Kernel of a Hyperdimensional Predictive
Processing Cognitive Architecture [79.07468367923619]
神経生物学的に妥当な2つの計算モデルを組み合わせた新しい認知アーキテクチャを提案する。
我々は、現代の機械学習技術の力を持つ認知アーキテクチャを開発することを目指している。
論文 参考訳(メタデータ) (2022-03-31T04:44:28Z) - Simulation Intelligence: Towards a New Generation of Scientific Methods [81.75565391122751]
シミュレーション知能の9つのモチーフ」は、科学計算、科学シミュレーション、人工知能の融合に必要な重要なアルゴリズムの開発と統合のためのロードマップである。
シミュレーションインテリジェンスのモチーフは、オペレーティングシステムのレイヤ内のコンポーネントとよく似ています。
我々は、モチーフ間の協調的な努力が科学的な発見を加速する大きな機会をもたらすと信じている。
論文 参考訳(メタデータ) (2021-12-06T18:45:31Z) - Meta-brain Models: biologically-inspired cognitive agents [0.0]
メタ脳モデルと呼ぶ計算手法を提案する。
特殊なモデルを用いて構成したレイヤの組み合わせを提案する。
我々は、この柔軟でオープンソースなアプローチの開発における次のステップを提案して、結論付けます。
論文 参考訳(メタデータ) (2021-08-31T05:20:53Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
本稿では,ニューラル生成符号化とホログラフィック連想記憶に基づく認知モデルの実装について述べる。
提案システムは,多様なタスクから継続的に学習し,大規模に人的パフォーマンスをモデル化するエージェントを開発するための基盤となる。
論文 参考訳(メタデータ) (2021-05-15T22:55:23Z) - Adaptive Synthetic Characters for Military Training [0.9802137009065037]
現在の軍事シミュレーションにおける合成文字の挙動は、一般的にルールベースおよびリアクティブ計算モデルによって生成されるため、限られている。
本稿では,信頼できる行動のコヒーレントなシーケンスを実行できる自律的な合成文字を作成することを目的とした枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-06T18:45:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。