論文の概要: Hyperboost: Hyperparameter Optimization by Gradient Boosting surrogate
models
- arxiv url: http://arxiv.org/abs/2101.02289v1
- Date: Wed, 6 Jan 2021 22:07:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-11 01:05:12.688229
- Title: Hyperboost: Hyperparameter Optimization by Gradient Boosting surrogate
models
- Title(参考訳): Hyperboost: 勾配ブースティングサロゲートモデルによるハイパーパラメータ最適化
- Authors: Jeroen van Hoof, Joaquin Vanschoren
- Abstract要約: 現在の最先端の方法は、ランダムフォレストまたはガウスプロセスを利用してサーロゲートモデルを構築しています。
勾配向上に基づく新しいサロゲートモデルを提案する。
実験により,新しい手法は,ある程度の分類問題に対して,最先端技術より優れていることを示す。
- 参考スコア(独自算出の注目度): 0.4079265319364249
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian Optimization is a popular tool for tuning algorithms in automatic
machine learning (AutoML) systems. Current state-of-the-art methods leverage
Random Forests or Gaussian processes to build a surrogate model that predicts
algorithm performance given a certain set of hyperparameter settings. In this
paper, we propose a new surrogate model based on gradient boosting, where we
use quantile regression to provide optimistic estimates of the performance of
an unobserved hyperparameter setting, and combine this with a distance metric
between unobserved and observed hyperparameter settings to help regulate
exploration. We demonstrate empirically that the new method is able to
outperform some state-of-the art techniques across a reasonable sized set of
classification problems.
- Abstract(参考訳): Bayesian Optimizationは、自動機械学習(AutoML)システムでアルゴリズムをチューニングするための一般的なツールである。
現在の最先端の手法は、ランダムフォレストやガウス過程を利用して、特定のハイパーパラメータの設定でアルゴリズムのパフォーマンスを予測するサロゲートモデルを構築する。
本稿では,非観測ハイパーパラメータ設定の性能を楽観的に推定し,非観測および観測されたハイパーパラメータ設定間の距離メトリックと組み合わせて探索を規制する,グラデーションブースティングに基づく新しいサーロゲートモデルを提案する。
実験により,新しい手法は,ある程度の分類問題に対して,最先端技術より優れていることを示す。
関連論文リスト
- SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
本研究では,事前学習した拡散モデルにおけるパラメータの重要性について検討する。
本稿では,これらの非効率パラメータをフル活用するための新しいモデル微調整法を提案する。
本手法は,下流アプリケーションにおける事前学習モデルの生成能力を向上する。
論文 参考訳(メタデータ) (2024-09-10T16:44:47Z) - Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
本稿では,先行研究における重要な仮定を考察し,パラメータ化の新たな視点を提案する。
私たちの経験的調査には、3つの組み合わせでトレーニングされた数万のモデルが含まれています。
最高の学習率のスケーリング基準は、以前の作業の仮定から除外されることがよくあります。
論文 参考訳(メタデータ) (2024-07-08T12:32:51Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
本稿では,機械学習アルゴリズムの評価における不確実性を考慮した多目的ハイパーパラメータ最適化の結果について述べる。
木構造型Parzen Estimator(TPE)のサンプリング戦略と、ガウス過程回帰(GPR)と異種雑音の訓練後に得られたメタモデルを組み合わせる。
3つの解析的テスト関数と3つのML問題の実験結果は、多目的TPEとGPRよりも改善したことを示している。
論文 参考訳(メタデータ) (2022-09-09T14:58:43Z) - Hyper-parameter optimization based on soft actor critic and hierarchical
mixture regularization [5.063728016437489]
我々はマルコフ決定プロセスとしてハイパーパラメータ最適化プロセスをモデル化し、強化学習でそれに取り組む。
ソフトアクター評論家と階層混合正規化に基づく新しいハイパーパラメータ最適化法が提案されている。
論文 参考訳(メタデータ) (2021-12-08T02:34:43Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
ゼロ階超勾配(HOZOG)を用いた新しいハイパーパラメータ最適化法を提案する。
具体的には、A型制約最適化問題として、まずハイパーパラメータ最適化を定式化する。
次に、平均ゼロ階超勾配を用いてハイパーパラメータを更新する。
論文 参考訳(メタデータ) (2021-02-17T21:03:05Z) - Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
Filtering [53.523517926927894]
サンプルごとのHessian-vector積と勾配を用いて、自己チューニングの二次構造を構築する。
モデルに基づく手続きが雑音勾配設定に収束することを証明する。
これは自己チューニング二次体を構築するための興味深いステップである。
論文 参考訳(メタデータ) (2020-11-09T22:07:30Z) - Efficient hyperparameter optimization by way of PAC-Bayes bound
minimization [4.191847852775072]
本稿では,期待外誤差に縛られた確率的近似ベイズ(PAC-Bayes)と等価な別の目的について述べる。
そして、この目的を最小化するために、効率的な勾配に基づくアルゴリズムを考案する。
論文 参考訳(メタデータ) (2020-08-14T15:54:51Z) - Automatic Setting of DNN Hyper-Parameters by Mixing Bayesian
Optimization and Tuning Rules [0.6875312133832078]
トレーニングおよび検証セット上で,ネットワークの結果を評価し解析するための新しいアルゴリズムを構築した。
我々は、一連のチューニングルールを使用して、新しいハイパーパラメータと/またはハイパーパラメータ検索スペースを減らし、より良い組み合わせを選択する。
論文 参考訳(メタデータ) (2020-06-03T08:53:48Z) - Towards Automatic Bayesian Optimization: A first step involving
acquisition functions [0.0]
ベイズ最適化 (Bayesian optimization) は、ブラックボックスの最適化、すなわち解析的表現にアクセスできない関数の最先端技術である。
獲得関数を自動調整するいくつかの手法を探索し,自動ベイズ最適化に対する最初の試みを提案する。
論文 参考訳(メタデータ) (2020-03-21T12:22:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。