論文の概要: Multitask Learning for Emotion and Personality Detection
- arxiv url: http://arxiv.org/abs/2101.02346v1
- Date: Thu, 7 Jan 2021 03:09:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 21:35:21.168154
- Title: Multitask Learning for Emotion and Personality Detection
- Title(参考訳): 感情とパーソナリティ検出のためのマルチタスク学習
- Authors: Yang Li, Amirmohammad Kazameini, Yash Mehta, Erik Cambria
- Abstract要約: 本研究では,人格特性と感情行動の相関関係を解明し,新しいマルチタスク学習フレームワークSoGMTLを提案する。
当社の計算効率の高いCNNベースのマルチタスクモデルは、複数の有名なパーソナリティおよび感情データセットにわたる最先端のパフォーマンスを実現します。
- 参考スコア(独自算出の注目度): 17.029426018676997
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In recent years, deep learning-based automated personality trait detection
has received a lot of attention, especially now, due to the massive digital
footprints of an individual. Moreover, many researchers have demonstrated that
there is a strong link between personality traits and emotions. In this paper,
we build on the known correlation between personality traits and emotional
behaviors, and propose a novel multitask learning framework, SoGMTL that
simultaneously predicts both of them. We also empirically evaluate and discuss
different information-sharing mechanisms between the two tasks. To ensure the
high quality of the learning process, we adopt a MAML-like framework for model
optimization. Our more computationally efficient CNN-based multitask model
achieves the state-of-the-art performance across multiple famous personality
and emotion datasets, even outperforming Language Model based models.
- Abstract(参考訳): 近年,深層学習に基づく人格特徴の自動検出が注目されている。
さらに、多くの研究者がパーソナリティ特性と感情の間に強い関連があることを実証している。
本稿では,人格特性と感情行動の相関関係を解明し,両者を同時に予測する新しいマルチタスク学習フレームワークSoGMTLを提案する。
また,2つのタスク間の異なる情報共有機構を実証的に評価し,議論する。
学習プロセスの質を高めるために,モデル最適化のためのMAMLライクなフレームワークを採用する。
より計算効率のよいCNNベースのマルチタスクモデルは、複数の有名人格や感情データセットをまたいだ最先端のパフォーマンスを実現します。
関連論文リスト
- PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - SEGAA: A Unified Approach to Predicting Age, Gender, and Emotion in
Speech [0.0]
この研究は、膨大な応用分野である声道の年齢、性別、感情を予測することを目的としている。
これらの予測のためのディープラーニングモデルを探索するには、本論文で強調された単一、複数出力、シーケンシャルモデルを比較する必要がある。
実験により,複数出力モデルが個々のモデルと相容れない性能を示し,変数と音声入力の複雑な関係を効率よく把握し,実行環境の改善を実現している。
論文 参考訳(メタデータ) (2024-03-01T11:28:37Z) - MMToM-QA: Multimodal Theory of Mind Question Answering [80.87550820953236]
心の理論 (ToM) は人間レベルの社会知能を持つ機械を開発する上で不可欠な要素である。
最近の機械学習モデル、特に大きな言語モデルは、ToM理解のいくつかの側面を示しているようだ。
一方、ヒューマンToMはビデオやテキストの理解以上のものです。
人は、利用可能なデータから抽出された概念的表現に基づいて、他人の心について柔軟に推論することができる。
論文 参考訳(メタデータ) (2024-01-16T18:59:24Z) - A Multi-Task, Multi-Modal Approach for Predicting Categorical and
Dimensional Emotions [0.0]
分類的・次元的な感情を予測するマルチタスク・マルチモーダルシステムを提案する。
その結果,2種類の感情の相互規則化の重要性が強調された。
論文 参考訳(メタデータ) (2023-12-31T16:48:03Z) - Personality-aware Human-centric Multimodal Reasoning: A New Task,
Dataset and Baselines [32.82738983843281]
我々はPersonality-aware Human-centric Multimodal Reasoning (PHMR) (T1)と呼ばれる新しいタスクを導入する。
課題は、過去の事例から得たマルチモーダル情報を用いて、個性要素を統合しながら、特定の個人の将来行動を予測することである。
実験の結果,性格特性を取り入れることで,人間中心の多モーダル推論性能が向上することが示された。
論文 参考訳(メタデータ) (2023-04-05T09:09:10Z) - An Open-source Benchmark of Deep Learning Models for Audio-visual
Apparent and Self-reported Personality Recognition [10.59440995582639]
パーソナリティは、人間の日常生活や作業行動の多様さを決定づけ、人間の内外的状態を理解するのに不可欠である。
近年,非言語的音声視覚行動に基づいて,対象者の見かけの個性や自己報告の個性を予測するために,多数の自動パーソナリティコンピューティング手法が開発されている。
一貫性のある実験的な設定の標準ベンチマークがないため、これらのパーソナリティコンピューティングモデルの実際の性能を適切に比較することは不可能であり、再現も困難である。
既存の8つのパーソナリティ・コンピューティング・モデルに対して公平かつ一貫した評価を提供するために,最初の再現可能な音声視覚ベンチマーク・フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-17T14:40:04Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - MEmoBERT: Pre-training Model with Prompt-based Learning for Multimodal
Emotion Recognition [118.73025093045652]
マルチモーダル感情認識のための事前学習モデル textbfMEmoBERT を提案する。
従来の「訓練前、微妙な」パラダイムとは異なり、下流の感情分類タスクをマスク付きテキスト予測として再構成するプロンプトベースの手法を提案する。
提案するMEMOBERTは感情認識性能を大幅に向上させる。
論文 参考訳(メタデータ) (2021-10-27T09:57:00Z) - M2Lens: Visualizing and Explaining Multimodal Models for Sentiment
Analysis [28.958168542624062]
感情分析のためのマルチモーダルモデルの可視化と説明を行う対話型視覚分析システムM2Lensを提案する。
M2Lensは、グローバル、サブセット、および局所レベルでのモーダル内およびモーダル間相互作用の説明を提供する。
論文 参考訳(メタデータ) (2021-07-17T15:54:27Z) - Two-Faced Humans on Twitter and Facebook: Harvesting Social Multimedia
for Human Personality Profiling [74.83957286553924]
我々は、"PERS"と呼ばれる新しい多視点融合フレームワークを適用して、マイアーズ・ブリッグス・パーソナリティ・タイプインジケータを推定する。
実験の結果,多視点データからパーソナリティ・プロファイリングを学習する能力は,多様なソーシャル・マルチメディア・ソースからやってくるデータを効率的に活用できることが示唆された。
論文 参考訳(メタデータ) (2021-06-20T10:48:49Z) - Deep Multi-task Multi-label CNN for Effective Facial Attribute
Classification [53.58763562421771]
DMM-CNN(ディープ・マルチタスク・マルチラベル・CNN)による効果的な顔属性分類(FAC)を提案する。
具体的には、DMM-CNNは、2つの密接に関連するタスク(顔のランドマーク検出とFAC)を共同で最適化し、マルチタスク学習を活用することにより、FACの性能を向上させる。
2つの異なるネットワークアーキテクチャは2つの属性のグループの特徴を抽出するために設計され、トレーニング中に各顔属性に損失重みを自動的に割り当てる新しい動的重み付け方式が提案されている。
論文 参考訳(メタデータ) (2020-02-10T12:34:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。