論文の概要: Safety-Oriented Pedestrian Motion and Scene Occupancy Forecasting
- arxiv url: http://arxiv.org/abs/2101.02385v1
- Date: Thu, 7 Jan 2021 06:08:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 13:42:37.948584
- Title: Safety-Oriented Pedestrian Motion and Scene Occupancy Forecasting
- Title(参考訳): 安全指向歩行者運動と現場占有予測
- Authors: Katie Luo, Sergio Casas, Renjie Liao, Xinchen Yan, Yuwen Xiong,
Wenyuan Zeng, Raquel Urtasun
- Abstract要約: 我々は、個々の動きとシーン占有マップの両方を予測することを提唱する。
歩行者の相対的な空間情報を保存するScene-Actor Graph Neural Network (SA-GNN)を提案する。
2つの大規模な実世界のデータセットで、我々のシーン占有率予測が最先端のモーション予測手法よりも正確でより校正されていることを示した。
- 参考スコア(独自算出の注目度): 91.69900691029908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we address the important problem in self-driving of
forecasting multi-pedestrian motion and their shared scene occupancy map,
critical for safe navigation. Our contributions are two-fold. First, we
advocate for predicting both the individual motions as well as the scene
occupancy map in order to effectively deal with missing detections caused by
postprocessing, e.g., confidence thresholding and non-maximum suppression.
Second, we propose a Scene-Actor Graph Neural Network (SA-GNN) which preserves
the relative spatial information of pedestrians via 2D convolution, and
captures the interactions among pedestrians within the same scene, including
those that have not been detected, via message passing. On two large-scale
real-world datasets, nuScenes and ATG4D, we showcase that our scene-occupancy
predictions are more accurate and better calibrated than those from
state-of-the-art motion forecasting methods, while also matching their
performance in pedestrian motion forecasting metrics.
- Abstract(参考訳): 本稿では,安全ナビゲーションに欠かせないマルチペデストリアン運動とその共有シーン占有マップの予測における重要な課題について述べる。
私たちの貢献は2倍です。
まず,ポストプロセッシングによる検出の欠如,例えば信頼しきい値と非最大抑圧を効果的に対処するために,個々の動きとシーン占有マップの両方を予測することを提案する。
第2に,2次元畳み込みによる歩行者の相対的空間情報を保存し,検出されていない歩行者を含む同一シーン内の歩行者間の相互作用をメッセージパッシングによりキャプチャするScene-Actor Graph Neural Network (SA-GNN)を提案する。
nuScenes と ATG4D という2つの大規模な実世界のデータセットでは、私たちのシーン占有率予測は、最先端のモーション予測手法よりも正確で精度の高いキャリブレーションがなされており、また歩行者の動き予測指標のパフォーマンスも一致している。
関連論文リスト
- PIP-Net: Pedestrian Intention Prediction in the Wild [11.799731429829603]
PIP-Netは、現実の都市シナリオにおいて、AVによる歩行者横断意図を予測するために設計された新しいフレームワークである。
我々は、異なるカメラマウントとセットアップ用に設計された2種類のPIP-Netを提供する。
提案モデルでは、繰り返し時間的注意に基づく解を用いて、最先端の性能を向上する。
最初に、カスタマイズされた歩行者意図予測データセットであるUrban-PIPデータセットを提示する。
論文 参考訳(メタデータ) (2024-02-20T08:28:45Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Pedestrian Motion State Estimation From 2D Pose [3.189006905282788]
歩行者の交通違反やフレキシブルで変化しやすい性質は、歩行者の行動や意図を予測するのを難しくする。
歩行者運動状態やその他の影響要因と組み合わせることで、不要な事故を避けるために歩行者の意図を予測することができる。
本稿では,提案アルゴリズムをJAAD公開データセット上で検証し,既存の手法と比較して精度を11.6%向上させる。
論文 参考訳(メタデータ) (2021-02-27T07:00:06Z) - A Real-Time Predictive Pedestrian Collision Warning Service for
Cooperative Intelligent Transportation Systems Using 3D Pose Estimation [10.652350454373531]
歩行者方向認識(100.53 FPS)と意図予測(35.76 FPS)の2つのタスクに対して,リアルタイムな歩行者衝突警報サービス(P2CWS)を提案する。
提案手法は,提案したサイトに依存しない特徴により,複数のサイトに対する一般化を満足する。
提案したビジョンフレームワークは、トレーニングプロセスなしでTUDデータセットの行動認識タスクの89.3%の精度を実現する。
論文 参考訳(メタデータ) (2020-09-23T00:55:12Z) - Recognition and 3D Localization of Pedestrian Actions from Monocular
Video [11.29865843123467]
本稿では,エゴセントリックな視点から,単眼歩行行動認識と3D位置認識に焦点を当てた。
都市交通シーンにおけるこの問題に対処する上での課題は、歩行者の予測不可能な行動に起因する。
論文 参考訳(メタデータ) (2020-08-03T19:57:03Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
視覚データに対する推論は、ロボティクスとビジョンベースのアプリケーションにとって望ましい能力である。
本稿では,歩行者の意図を推論するため,現場の異なる物体間の関係を明らかにするためのグラフ上でのフレームワークを提案する。
歩行者の意図は、通りを横切る、あるいは横断しない将来の行動として定義され、自動運転車にとって非常に重要な情報である。
論文 参考訳(メタデータ) (2020-02-20T18:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。