A Comprehensive Study on Optimization Strategies for Gradient Descent In
Deep Learning
- URL: http://arxiv.org/abs/2101.02397v1
- Date: Thu, 7 Jan 2021 06:24:55 GMT
- Title: A Comprehensive Study on Optimization Strategies for Gradient Descent In
Deep Learning
- Authors: Kaustubh Yadav
- Abstract summary: This article aims to give an introduction to optimization strategies to gradient descent.
In addition, we shall also discuss the architecture of these algorithms and further optimization of Neural Networks in general.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the most important parts of Artificial Neural Networks is minimizing
the loss functions which tells us how good or bad our model is. To minimize
these losses we need to tune the weights and biases. Also to calculate the
minimum value of a function we need gradient. And to update our weights we need
gradient descent. But there are some problems with regular gradient descent ie.
it is quite slow and not that accurate. This article aims to give an
introduction to optimization strategies to gradient descent. In addition, we
shall also discuss the architecture of these algorithms and further
optimization of Neural Networks in general
Related papers
- Newton Losses: Using Curvature Information for Learning with Differentiable Algorithms [80.37846867546517]
We show how to train eight different neural networks with custom objectives.
We exploit their second-order information via their empirical Fisherssian matrices.
We apply Loss Lossiable algorithms to achieve significant improvements for less differentiable algorithms.
arXiv Detail & Related papers (2024-10-24T18:02:11Z) - Gradient-free neural topology optimization [0.0]
gradient-free algorithms require many more iterations to converge when compared to gradient-based algorithms.
This has made them unviable for topology optimization due to the high computational cost per iteration and high dimensionality of these problems.
We propose a pre-trained neural reparameterization strategy that leads to at least one order of magnitude decrease in iteration count when optimizing the designs in latent space.
arXiv Detail & Related papers (2024-03-07T23:00:49Z) - How to guess a gradient [68.98681202222664]
We show that gradients are more structured than previously thought.
Exploiting this structure can significantly improve gradient-free optimization schemes.
We highlight new challenges in overcoming the large gap between optimizing with exact gradients and guessing the gradients.
arXiv Detail & Related papers (2023-12-07T21:40:44Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
Forward learning is a biologically plausible alternative to backprop for learning deep neural networks.
We show that it is possible to substantially reduce the variance of the forward gradient by applying perturbations to activations rather than weights.
Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.
arXiv Detail & Related papers (2022-10-07T03:52:27Z) - Gradient Correction beyond Gradient Descent [63.33439072360198]
gradient correction is apparently the most crucial aspect for the training of a neural network.
We introduce a framework (textbfGCGD) to perform gradient correction.
Experiment results show that our gradient correction framework can effectively improve the gradient quality to reduce training epochs by $sim$ 20% and also improve the network performance.
arXiv Detail & Related papers (2022-03-16T01:42:25Z) - Penalizing Gradient Norm for Efficiently Improving Generalization in
Deep Learning [13.937644559223548]
How to train deep neural networks (DNNs) to generalize well is a central concern in deep learning.
We propose an effective method to improve the model generalization by penalizing the gradient norm of loss function during optimization.
arXiv Detail & Related papers (2022-02-08T02:03:45Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - Combining resampling and reweighting for faithful stochastic
optimization [1.52292571922932]
When the loss function is a sum of multiple terms, a popular method is gradient descent.
We show that the difference in the Lipschitz constants of multiple terms in the loss function causes gradient descent to different variances at different minimums.
arXiv Detail & Related papers (2021-05-31T04:21:25Z) - Reparametrizing gradient descent [0.0]
We propose an optimization algorithm which we call norm-adapted gradient descent.
Our algorithm can also be compared to quasi-Newton methods, but we seek roots rather than stationary points.
arXiv Detail & Related papers (2020-10-09T20:22:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.