Where2Act: From Pixels to Actions for Articulated 3D Objects
- URL: http://arxiv.org/abs/2101.02692v1
- Date: Thu, 7 Jan 2021 18:56:38 GMT
- Title: Where2Act: From Pixels to Actions for Articulated 3D Objects
- Authors: Kaichun Mo, Leonidas Guibas, Mustafa Mukadam, Abhinav Gupta, Shubham
Tulsiani
- Abstract summary: We extract highly localized actionable information related to elementary actions such as pushing or pulling for articulated objects with movable parts.
We propose a learning-from-interaction framework with an online data sampling strategy that allows us to train the network in simulation.
Our learned models even transfer to real-world data.
- Score: 54.19638599501286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the fundamental goals of visual perception is to allow agents to
meaningfully interact with their environment. In this paper, we take a step
towards that long-term goal -- we extract highly localized actionable
information related to elementary actions such as pushing or pulling for
articulated objects with movable parts. For example, given a drawer, our
network predicts that applying a pulling force on the handle opens the drawer.
We propose, discuss, and evaluate novel network architectures that given image
and depth data, predict the set of actions possible at each pixel, and the
regions over articulated parts that are likely to move under the force. We
propose a learning-from-interaction framework with an online data sampling
strategy that allows us to train the network in simulation (SAPIEN) and
generalizes across categories. But more importantly, our learned models even
transfer to real-world data. Check the project website for the code and data
release.
Related papers
- Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.
Our findings are synthesized in Flex (Fly-lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.
We demonstrate the effectiveness of this approach on quadrotor fly-to-target tasks, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [59.87033229815062]
Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered.
Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics.
We present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds.
arXiv Detail & Related papers (2024-09-24T17:59:56Z) - AffordanceLLM: Grounding Affordance from Vision Language Models [36.97072698640563]
Affordance grounding refers to the task of finding the area of an object with which one can interact.
Much of the knowledge is hidden and beyond the image content with the supervised labels from a limited training set.
We make an attempt to improve the generalization capability of the current affordance grounding by taking the advantage of the rich world, abstract, and human-object-interaction knowledge.
arXiv Detail & Related papers (2024-01-12T03:21:02Z) - Semi-Weakly Supervised Object Kinematic Motion Prediction [56.282759127180306]
Given a 3D object, kinematic motion prediction aims to identify the mobile parts as well as the corresponding motion parameters.
We propose a graph neural network to learn the map between hierarchical part-level segmentation and mobile parts parameters.
The network predictions yield a large scale of 3D objects with pseudo labeled mobility information.
arXiv Detail & Related papers (2023-03-31T02:37:36Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
We propose a new self-supervised method for pre-training the backbone of deep perception models operating on point clouds.
The core idea is to train the model on a pretext task which is the reconstruction of the surface on which the 3D points are sampled.
The intuition is that if the network is able to reconstruct the scene surface, given only sparse input points, then it probably also captures some fragments of semantic information.
arXiv Detail & Related papers (2022-12-12T13:10:19Z) - Spot What Matters: Learning Context Using Graph Convolutional Networks
for Weakly-Supervised Action Detection [0.0]
We introduce an architecture based on self-attention and Convolutional Networks to improve human action detection in video.
Our model aids explainability by visualizing the learned context as an attention map, even for actions and objects unseen during training.
Experimental results show that our contextualized approach outperforms a baseline action detection approach by more than 2 points in Video-mAP.
arXiv Detail & Related papers (2021-07-28T21:37:18Z) - A Long Horizon Planning Framework for Manipulating Rigid Pointcloud
Objects [25.428781562909606]
We present a framework for solving long-horizon planning problems involving manipulation of rigid objects.
Our method plans in the space of object subgoals and frees the planner from reasoning about robot-object interaction dynamics.
arXiv Detail & Related papers (2020-11-16T18:59:33Z) - Learning Long-term Visual Dynamics with Region Proposal Interaction
Networks [75.06423516419862]
We build object representations that can capture inter-object and object-environment interactions over a long-range.
Thanks to the simple yet effective object representation, our approach outperforms prior methods by a significant margin.
arXiv Detail & Related papers (2020-08-05T17:48:00Z) - Hindsight for Foresight: Unsupervised Structured Dynamics Models from
Physical Interaction [24.72947291987545]
Key challenge for an agent learning to interact with the world is to reason about physical properties of objects.
We propose a novel approach for modeling the dynamics of a robot's interactions directly from unlabeled 3D point clouds and images.
arXiv Detail & Related papers (2020-08-02T11:04:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.