Entropic bounds on information backflow
- URL: http://arxiv.org/abs/2101.02720v1
- Date: Thu, 7 Jan 2021 19:00:30 GMT
- Title: Entropic bounds on information backflow
- Authors: Nina Megier, Andrea Smirne, Bassano Vacchini
- Abstract summary: We exploit a regularized version of Umegaki's quantum relative entropy, known as telescopic relative entropy, that is tightly connected to the quantum Jensen-Shannon divergence.
We derive general upper bounds on the telescopic relative entropy revivals conditioned and determined by the formation of correlations and changes in the environment.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the dynamics of open quantum systems, the backflow of information to the
reduced system under study has been suggested as the actual physical mechanism
inducing memory and thus leading to non-Markovian quantum dynamics. To this
aim, the trace-distance or Bures-distance revivals between distinct evolved
system states have been shown to be subordinated to the establishment of
system-environment correlations or changes in the environmental state. We show
that this interpretation can be substantiated also for a class of entropic
quantifiers. We exploit a suitably regularized version of Umegaki's quantum
relative entropy, known as telescopic relative entropy, that is tightly
connected to the quantum Jensen-Shannon divergence. In particular, we derive
general upper bounds on the telescopic relative entropy revivals conditioned
and determined by the formation of correlations and changes in the environment.
We illustrate our findings by means of examples, considering the
Jaynes-Cummings model and a two-qubit dynamics.
Related papers
- Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Exact Quantum Dynamics, Shortcuts to Adiabaticity, and Quantum Quenches
in Strongly-Correlated Many-Body Systems: The Time-Dependent Jastrow Ansatz [3.0616044531734192]
We introduce a generalization of the Jastrow ansatz for time-dependent wavefunctions.
It provides an efficient and exact description of the time-evolution of a variety of systems exhibiting strong correlations.
arXiv Detail & Related papers (2022-10-26T18:00:03Z) - Monitored Open Fermion Dynamics: Exploring the Interplay of Measurement,
Decoherence, and Free Hamiltonian Evolution [0.0]
We investigate the impact of dephasing and the inevitable evolution into a non-Gaussian, mixed state, on the dynamics of monitored fermions.
For weak dephasing, constant monitoring preserves a weakly mixed state, which displays a robust measurement-induced phase transition.
We interpret this as a signature of gapless, classical diffusion, which is stabilized by the balanced interplay of Hamiltonian dynamics, measurements, and decoherence.
arXiv Detail & Related papers (2022-02-28T19:00:13Z) - Discord and Decoherence [0.0]
We investigate how quantum discord is modified by a quantum-to-classical transition.
We find that the evolution of quantum discord in presence of an environment is a competition between the growth of the squeezing amplitude and the decrease of the state purity.
arXiv Detail & Related papers (2021-12-09T17:01:54Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Information Fluctuation Theorem for an Open Quantum Bipartite System [7.794211366198158]
We study an arbitrary non-equilibrium dynamics of a quantum bipartite system coupled to a reservoir.
We designate the local and the global states altogether in the time-forward and the time-reversed transition probabilities.
arXiv Detail & Related papers (2020-05-21T08:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.