Sensing quantum chaos through the non-unitary geometric phase
- URL: http://arxiv.org/abs/2104.06367v1
- Date: Tue, 13 Apr 2021 17:24:08 GMT
- Title: Sensing quantum chaos through the non-unitary geometric phase
- Authors: Nicol\'as Mirkin, Diego Wisniacki, Paula I. Villar, Fernando C.
Lombardo
- Abstract summary: We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum chaos is usually characterized through its statistical implications
on the energy spectrum of a given system. In this work we propose a decoherent
mechanism for sensing quantum chaos. The chaotic nature of a many-body quantum
system is sensed by studying the implications that the system produces in the
long-time dynamics of a probe coupled to it under a dephasing interaction. By
introducing the notion of an effective averaged decoherence factor, we show
that the correction to the geometric phase acquired by the probe with respect
to its unitary evolution can be exploited as a robust tool for sensing the
integrable to chaos transition of the many-body quantum system to which it is
coupled. This sensing mechanism is verified for several systems with different
types of symmetries, disorder and even in the presence of long-range
interactions, evidencing its universality.
Related papers
- Harnessing spin-qubit decoherence to probe strongly-interacting quantum systems [0.0]
We employ a single spin qubit to probe a strongly interacting system.
By focusing on the XXZ spin chain, we observe diverse dynamics in the qubit evolution.
This approach reveals the power of small quantum systems to probe the properties of large, strongly correlated quantum systems.
arXiv Detail & Related papers (2024-10-29T12:51:55Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Spectral chaos bounds from scaling theory of maximally efficient
quantum-dynamical scrambling [49.1574468325115]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.
We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.
We establish that scaling predictions are matched by a privileged process, and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all timescales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Observation of universal dissipative dynamics in strongly correlated
quantum gas [7.693218037362169]
We observe a universal dissipative dynamics in strongly correlated one-dimensional quantum gases.
This method could have broad applications in detecting strongly correlated features, including spin-charge separations and Fermi arcs in quantum materials.
arXiv Detail & Related papers (2023-09-19T02:32:02Z) - Steady-state quantum chaos in open quantum systems [0.0]
We introduce the notion of steady-state quantum chaos as a general phenomenon in open quantum many-body systems.
Chaos and integrability in the steady state of an open quantum system are instead uniquely determined by the spectral structure of the time evolution generator.
We study steady-state chaos in the driven-dissipative Bose-Hubbard model, a paradigmatic example of out-of-equilibrium bosonic system without particle number conservation.
arXiv Detail & Related papers (2023-05-24T18:00:22Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Operational Metric for Quantum Chaos and the Corresponding
Spatiotemporal Entanglement Structure [0.0]
We demand that the future state of a many-body, isolated quantum system is sensitive to past multitime operations on a small subpart of that system.
Our work paves the way to systematically study many-body dynamical phenomena like Many-Body, measurement-Lo phase transitions, and Floquet dynamics.
arXiv Detail & Related papers (2022-10-26T18:00:01Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Adiabatic eigenstate deformations as a sensitive probe for quantum chaos [0.0]
We show that the norm of the adiabatic gauge potential serves as a much more sensitive measure of quantum chaos.
We are able to detect transitions from non-ergodic to ergodic behavior at perturbation strengths orders of magnitude smaller than those required for standard measures.
arXiv Detail & Related papers (2020-04-10T14:13:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.