論文の概要: Learning Grammar of Complex Activities via Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2101.02774v1
- Date: Thu, 7 Jan 2021 21:48:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 13:49:17.909510
- Title: Learning Grammar of Complex Activities via Deep Neural Networks
- Title(参考訳): ディープニューラルネットワークによる複雑な活動の文法学習
- Authors: Becky Mashaido
- Abstract要約: 本報告はラベル制約下でビデオ学習のためのディープニューラルネットワークに関する理論的洞察を提供する。
コンピュータビジョンのためのビデオ学習のこれまでの仕事の上に構築し、モデルパフォーマンスの観察を行い、観察を改善するためのさらなるメカニズムを提案します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the growing amount of publicly available video data on online
streaming services and an increased interest in applications that analyze
continuous video streams such as autonomous driving, this technical report
provides a theoretical insight into deep neural networks for video learning,
under label constraints. I build upon previous work in video learning for
computer vision, make observations on model performance and propose further
mechanisms to help improve our observations.
- Abstract(参考訳): オンラインストリーミングサービス上の公開ビデオデータの増加と、自動運転などの連続ビデオストリームを分析するアプリケーションへの関心の高まりに動機づけられたこのテクニカルレポートは、ラベル制約下で、ビデオ学習のためのディープニューラルネットワークに関する理論的洞察を提供する。
コンピュータビジョンのためのビデオ学習におけるこれまでの成果を生かし、モデル性能の観察を行い、我々の観察を改善するためのさらなるメカニズムを提案する。
関連論文リスト
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Integration and Performance Analysis of Artificial Intelligence and
Computer Vision Based on Deep Learning Algorithms [5.734290974917728]
本稿では,ディープラーニングとコンピュータビジョン技術の統合による応用効果の分析に焦点をあてる。
ディープラーニングは階層型ニューラルネットワークを構築することで歴史的なブレークスルーを実現し、エンドツーエンドの機能学習と画像の意味的理解を可能にする。
コンピュータビジョンの分野で成功した経験は、ディープラーニングアルゴリズムのトレーニングに強力なサポートを提供する。
論文 参考訳(メタデータ) (2023-12-20T09:37:06Z) - Deep Learning Techniques for Video Instance Segmentation: A Survey [19.32547752428875]
ビデオインスタンスセグメンテーションは、2019年に導入された新しいコンピュータビジョン研究分野である。
ディープラーニング技術は、様々なコンピュータビジョン領域において支配的な役割を担っている。
このサーベイは、ビデオインスタンスセグメンテーションのためのディープラーニングスキームの多面的なビューを提供する。
論文 参考訳(メタデータ) (2023-10-19T00:27:30Z) - Learning with Capsules: A Survey [73.31150426300198]
カプセルネットワークは、オブジェクト中心の表現を学習するための畳み込みニューラルネットワーク(CNN)に代わるアプローチとして提案された。
CNNとは異なり、カプセルネットワークは部分的に階層的な関係を明示的にモデル化するように設計されている。
論文 参考訳(メタデータ) (2022-06-06T15:05:36Z) - Measuring and modeling the motor system with machine learning [117.44028458220427]
モーターシステムの理解における機械学習の有用性は、データの収集、測定、分析の方法に革命をもたらすことを約束している。
本稿では, ポーズ推定, 運動解析, 次元減少, 閉ループフィードバックから, ニューラル相関の理解, 機能停止まで, 機械学習の利用の増大について論じる。
論文 参考訳(メタデータ) (2021-03-22T12:42:16Z) - Video Summarization Using Deep Neural Networks: A Survey [72.98424352264904]
ビデオ要約技術は、ビデオコンテンツの最も有益な部分を選択して、簡潔で完全なシノプシスを作成することを目指しています。
本研究は,この領域における最近の進歩に着目し,既存の深層学習に基づく総括的映像要約手法の包括的調査を行う。
論文 参考訳(メタデータ) (2021-01-15T11:41:29Z) - Neuro-Symbolic Representations for Video Captioning: A Case for
Leveraging Inductive Biases for Vision and Language [148.0843278195794]
ビデオキャプションのためのマルチモーダルなニューラルシンボリック表現を学習するための新しいモデルアーキテクチャを提案する。
本手法では,ビデオ間の関係を学習する辞書学習手法と,そのペアによるテキスト記述を用いる。
論文 参考訳(メタデータ) (2020-11-18T20:21:19Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z) - Continual Learning for Anomaly Detection in Surveillance Videos [36.24563211765782]
本稿では,移動学習と連続学習を用いた監視ビデオのオンライン異常検出手法を提案する。
提案アルゴリズムは,移動学習のためのニューラルネットワークモデルの特徴抽出能力と,統計的検出手法の連続学習能力を利用する。
論文 参考訳(メタデータ) (2020-04-15T16:41:20Z) - Interactive Summarizing -- Automatic Slide Localization Technology as
Generative Learning Tool [10.81386784858998]
映像要約は,ビデオ講義における学習者の要約体験を高めるために有効な技術である。
対話型要約モデルは,畳み込みニューラルネットワークが支援するビデオ講義学習プロセスにおいて,学習者がどのように関与しているかを説明するように設計されている。
論文 参考訳(メタデータ) (2020-02-25T22:22:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。