論文の概要: A Tale of Fairness Revisited: Beyond Adversarial Learning for Deep
Neural Network Fairness
- arxiv url: http://arxiv.org/abs/2101.02831v1
- Date: Fri, 8 Jan 2021 03:13:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 05:12:18.916595
- Title: A Tale of Fairness Revisited: Beyond Adversarial Learning for Deep
Neural Network Fairness
- Title(参考訳): a tale of fairness revisited: beyond adversarial learning for deep neural network fairness
- Authors: Becky Mashaido and Winston Moh Tangongho
- Abstract要約: 自動化と人工知能技術の時代における公正なアルゴリズム決定の必要性から、この技術レポートは、ディープラーニングにおける公正さに対する敵の訓練に関する理論的洞察を提供する。
我々は、敵の公正さに関する以前の研究の上に構築し、公正な予測とモデルパフォーマンスの間の永続的なトレードオフを示し、このトレードオフを相殺するためのさらなるメカニズムを探求する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the need for fair algorithmic decision making in the age of
automation and artificially-intelligent technology, this technical report
provides a theoretical insight into adversarial training for fairness in deep
learning. We build upon previous work in adversarial fairness, show the
persistent tradeoff between fair predictions and model performance, and explore
further mechanisms that help in offsetting this tradeoff.
- Abstract(参考訳): 自動化と人工知能技術の時代における公正なアルゴリズム決定の必要性から、この技術レポートは、ディープラーニングにおける公正さに対する敵の訓練に関する理論的洞察を提供する。
我々は、敵の公正さに関する以前の研究の上に構築し、公正な予測とモデルパフォーマンスの間の永続的なトレードオフを示し、このトレードオフを相殺するためのさらなるメカニズムを探る。
関連論文リスト
- FairCompass: Operationalising Fairness in Machine Learning [34.964477625987136]
責任あるAIソリューションを開発するための衝動が高まっている。
さまざまな機械学習フェアネスソリューションが文献で提案されている。
現実世界のアプリケーションでは、これらのツールの実践的な実装が欠如していると伝えられている。
論文 参考訳(メタデータ) (2023-12-27T21:29:53Z) - The Fairness Stitch: Unveiling the Potential of Model Stitching in
Neural Network De-Biasing [0.043512163406552]
本研究では,深層学習モデルの公平性を高めるために,"The Fairness Stitch"と呼ばれる新しい手法を提案する。
我々はCelebAとUTKFaceの2つのよく知られたデータセットを総合的に評価する。
フェアネスとパフォーマンスのバランスの取れたトレードオフを達成する上で, 顕著な改善がみられた。
論文 参考訳(メタデータ) (2023-11-06T21:14:37Z) - Towards a General Framework for Continual Learning with Pre-training [55.88910947643436]
本稿では,事前学習を用いた逐次到着タスクの連続学習のための一般的な枠組みを提案する。
我々はその目的を,タスク内予測,タスク同一性推論,タスク適応予測という3つの階層的構成要素に分解する。
本稿では,パラメータ効率細調整(PEFT)技術と表現統計量を用いて,これらのコンポーネントを明示的に最適化する革新的な手法を提案する。
論文 参考訳(メタデータ) (2023-10-21T02:03:38Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Last-Layer Fairness Fine-tuning is Simple and Effective for Neural
Networks [36.182644157139144]
我々は、公正なニューラルネットワークを効率的かつ安価に訓練するためのフレームワークを開発する。
最後の層微細チューニングだけでは、ディープニューラルネットワークの公平性を効果的に促進できる。
論文 参考訳(メタデータ) (2023-04-08T06:49:15Z) - Technical Challenges for Training Fair Neural Networks [62.466658247995404]
最先端のアーキテクチャを用いて顔認識と自動診断データセットの実験を行います。
我々は、大きなモデルは公平さの目標に過度に適合し、意図しない、望ましくない結果を生み出すことを観察する。
論文 参考訳(メタデータ) (2021-02-12T20:36:45Z) - Provably Training Neural Network Classifiers under Fairness Constraints [70.64045590577318]
過パラメータのニューラルネットワークが制約を満たしていることを示す。
公平なニューラルネットワーク分類器を構築する上で重要な要素は、ニューラルネットワークの非応答解析を確立することである。
論文 参考訳(メタデータ) (2020-12-30T18:46:50Z) - Improving Fair Predictions Using Variational Inference In Causal Models [8.557308138001712]
アルゴリズム的公正の重要性は、機械学習が人々の生活に与える影響の増加とともに増大する。
フェアネス指標に関する最近の研究は、フェアネス制約における因果推論の必要性を示している。
本研究は、我々の倫理的・法的境界を尊重する機械学習技術に貢献することを目的としている。
論文 参考訳(メタデータ) (2020-08-25T08:27:11Z) - FairALM: Augmented Lagrangian Method for Training Fair Models with
Little Regret [42.66567001275493]
現在、我々がモデルに提示するデータセットのバイアスのため、公正な公開トレーニングが不公平なモデルにつながることは受け入れられている。
そこで本研究では,モデルのトレーニング中に公平性を同時に課すメカニズムについて検討する。
論文 参考訳(メタデータ) (2020-04-03T03:18:53Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。