論文の概要: Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction
- arxiv url: http://arxiv.org/abs/2101.02843v1
- Date: Fri, 8 Jan 2021 04:14:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 11:54:59.043213
- Title: Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction
- Title(参考訳): ピクセルワイズ予測のための条件付きカーネルを用いた確率的グラフアテンションネットワーク
- Authors: Dan Xu, Xavier Alameda-Pineda, Wanli Ouyang, Elisa Ricci, Xiaogang
Wang, Nicu Sebe
- Abstract要約: 本稿では,画素レベルの予測を基本的側面,すなわち,技術の現状を推し進める新たなアプローチを提案する。
構造化されたマルチスケール機能学習と融合。
本論文では,マルチスケール表現を原理的に学習・融合するための新しいアテンテンションゲート条件ランダムフィールド(AG-CRFs)モデルに基づく確率的グラフアテンションネットワーク構造を提案する。
- 参考スコア(独自算出の注目度): 158.88345945211185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-scale representations deeply learned via convolutional neural networks
have shown tremendous importance for various pixel-level prediction problems.
In this paper we present a novel approach that advances the state of the art on
pixel-level prediction in a fundamental aspect, i.e. structured multi-scale
features learning and fusion. In contrast to previous works directly
considering multi-scale feature maps obtained from the inner layers of a
primary CNN architecture, and simply fusing the features with weighted
averaging or concatenation, we propose a probabilistic graph attention network
structure based on a novel Attention-Gated Conditional Random Fields (AG-CRFs)
model for learning and fusing multi-scale representations in a principled
manner. In order to further improve the learning capacity of the network
structure, we propose to exploit feature dependant conditional kernels within
the deep probabilistic framework. Extensive experiments are conducted on four
publicly available datasets (i.e. BSDS500, NYUD-V2, KITTI, and Pascal-Context)
and on three challenging pixel-wise prediction problems involving both discrete
and continuous labels (i.e. monocular depth estimation, object contour
prediction, and semantic segmentation). Quantitative and qualitative results
demonstrate the effectiveness of the proposed latent AG-CRF model and the
overall probabilistic graph attention network with feature conditional kernels
for structured feature learning and pixel-wise prediction.
- Abstract(参考訳): 畳み込みニューラルネットワークによって深く学習されたマルチスケール表現は、様々なピクセルレベルの予測問題において極めて重要である。
本稿では,画素レベルの予測を基本的側面,すなわち,技術の現状を推し進める新しいアプローチを提案する。
構造化されたマルチスケール特徴の学習と融合。
主cnnアーキテクチャの内部層から得られた多元的特徴マップを直接考慮し、重み付き平均化や連結化で特徴を単純に融合する従来の研究とは対照的に、多元的表現を原則的に学習・活用するための新しい注意調整条件付確率場(ag-crfs)モデルに基づく確率的グラフ注意ネットワーク構造を提案する。
本稿では,ネットワーク構造の学習能力をさらに向上させるために,深い確率的枠組み内での条件付きカーネルの活用を提案する。
利用可能な4つのデータセット(すなわち、公開データセット)で広範な実験が行われている。
BSDS500、NYUD-V2、KITTI、Pascal-Context)、および離散ラベルと連続ラベルの両方を含む3つのピクセルワイド予測問題。
単眼深度推定、物体輪郭予測、意味的セグメンテーション)。
定量的および定性的な結果から,提案した潜伏型AG-CRFモデルと,特徴条件付きカーネルを用いた全体の確率的グラフアテンションネットワークの有効性を示す。
関連論文リスト
- Neural Clustering based Visual Representation Learning [61.72646814537163]
クラスタリングは、機械学習とデータ分析における最も古典的なアプローチの1つである。
本稿では,特徴抽出をデータから代表者を選択するプロセスとみなすクラスタリング(FEC)による特徴抽出を提案する。
FECは、個々のクラスタにピクセルをグループ化して抽象的な代表を配置し、現在の代表とピクセルの深い特徴を更新する。
論文 参考訳(メタデータ) (2024-03-26T06:04:50Z) - Deep Dependency Networks for Multi-Label Classification [24.24496964886951]
マルコフ確率場とニューラルネットワークを組み合わせた従来の手法の性能は、わずかに改善できることを示す。
我々は、依存性ネットワークを拡張するディープ依存ネットワークと呼ばれる新しいモデリングフレームワークを提案する。
単純さにもかかわらず、この新しいアーキテクチャを共同学習することで、パフォーマンスが大幅に向上する。
論文 参考訳(メタデータ) (2023-02-01T17:52:40Z) - Rethinking Unsupervised Neural Superpixel Segmentation [6.123324869194195]
CNNによるスーパーピクセルセグメンテーションのための教師なし学習が研究されている。
このようなネットワークの有効性を改善するために,3つの重要な要素を提案する。
BSDS500データセットを実験した結果,提案手法の意義を示す証拠が得られた。
論文 参考訳(メタデータ) (2022-06-21T09:30:26Z) - Inference Graphs for CNN Interpretation [12.765543440576144]
畳み込みニューラルネットワーク(CNN)は多くの視覚関連タスクにおいて優れた精度を実現している。
本稿では,確率モデルを用いたネットワーク隠蔽層の活動のモデル化を提案する。
このようなグラフは、クラス全体の推論プロセスの理解や、ネットワークが特定の画像に対して行う決定を説明するのに有用であることを示す。
論文 参考訳(メタデータ) (2021-10-20T13:56:09Z) - Bayesian Attention Belief Networks [59.183311769616466]
注意に基づくニューラルネットワークは、幅広いタスクにおいて最先端の結果を得た。
本稿では,非正規化注意重みをモデル化してデコーダネットワークを構築するベイズ的注意信念ネットワークについて紹介する。
提案手法は, 精度, 不確実性推定, ドメイン間の一般化, 敵攻撃において, 決定論的注意と最先端の注意よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-09T17:46:22Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
空間的注意マップとチャネル的注意の両方を原則的に共同学習するための統合的深層フレームワークを提案する。
具体的には,確率的表現学習フレームワークに注目度の推定と相互作用を統合する。
ニューラルネットワーク内で推論ルールを実装し,確率パラメータとcnnフロントエンドパラメータのエンドツーエンド学習を可能にする。
論文 参考訳(メタデータ) (2021-03-05T07:37:24Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
本稿では,高品質(本社)画像再構成のために,異なる状態の情報をどのように組み合わせるべきかを学習するディープインターリーブドネットワーク(DIN)を提案する。
本稿では,各インターリーブノードにアタッチメントされた非対称なコアテンション(AsyCA)を提案し,その特性依存性をモデル化する。
提案したDINはエンドツーエンドで訓練でき、様々な画像復元タスクに適用できる。
論文 参考訳(メタデータ) (2020-10-29T15:32:00Z) - Deep Probabilistic Feature-metric Tracking [27.137827823264942]
画素単位の深度特徴写像と深度特徴量不確実性写像を学習するための新しいフレームワークを提案する。
CNNは、より高速で信頼性の高い収束のための深い初期ポーズを予測する。
実験により,TUM RGB-Dデータセットと3次元剛性物体追跡データセットの最先端性能が示された。
論文 参考訳(メタデータ) (2020-08-31T11:47:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。