A general framework for modeling and dynamic simulation of multibody
systems using factor graphs
- URL: http://arxiv.org/abs/2101.02874v1
- Date: Fri, 8 Jan 2021 06:45:45 GMT
- Title: A general framework for modeling and dynamic simulation of multibody
systems using factor graphs
- Authors: Jos\'e-Luis Blanco-Claraco, Antonio Leanza, Giulio Reina
- Abstract summary: We present a novel general framework grounded in the factor graph theory to solve kinematic and dynamic problems for multi-body systems.
We describe how to build factor graphs to model and simulate multibody systems using both, independent and dependent coordinates.
The proposed framework has been tested in extensive simulations and validated against a commercial multibody software.
- Score: 0.8701566919381223
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we present a novel general framework grounded in the factor
graph theory to solve kinematic and dynamic problems for multi-body systems.
Although the motion of multi-body systems is considered to be a well-studied
problem and various methods have been proposed for its solution, a unified
approach providing an intuitive interpretation is still pursued. We describe
how to build factor graphs to model and simulate multibody systems using both,
independent and dependent coordinates. Then, batch optimization or a
fixed-lag-smoother can be applied to solve the underlying optimization problem
that results in a highly-sparse nonlinear minimization problem. The proposed
framework has been tested in extensive simulations and validated against a
commercial multibody software. We release a reference implementation as an
open-source C++ library, based on the GTSAM framework, a well-known estimation
library. Simulations of forward and inverse dynamics are presented, showing
comparable accuracy with classical approaches. The proposed factor graph-based
framework has the potential to be integrated into applications related with
motion estimation and parameter identification of complex mechanical systems,
ranging from mechanisms to vehicles, or robot manipulators.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - PGODE: Towards High-quality System Dynamics Modeling [40.76121531452706]
This paper studies the problem of modeling multi-agent dynamical systems, where agents could interact mutually to influence their behaviors.
Recent research predominantly uses geometric graphs to depict these mutual interactions, which are then captured by graph neural networks (GNNs)
We propose a new approach named Prototypical Graph ODE to address the problem.
arXiv Detail & Related papers (2023-11-11T12:04:47Z) - Sparse Graphical Linear Dynamical Systems [1.6635799895254402]
Time-series datasets are central in machine learning with applications in numerous fields of science and engineering.
This work proposes a novel approach to bridge the gap by introducing a joint graphical modeling framework.
We present DGLASSO, a new inference method within this framework that implements an efficient block alternating majorization-minimization algorithm.
arXiv Detail & Related papers (2023-07-06T14:10:02Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
In this work, we explore the idea of multiscale modeling with machine learning and employ DeepONet, a neural operator, as an efficient surrogate of the expensive solver.
DeepONet is trained offline using data acquired from the fine solver for learning the underlying and possibly unknown fine-scale dynamics.
We present various benchmarks to assess accuracy and speedup, and in particular we develop a coupling algorithm for a time-dependent problem.
arXiv Detail & Related papers (2022-02-25T20:46:08Z) - Learning Time-Varying Graphs from Online Data [39.21234914444073]
This work proposes an algorithmic framework to learn time-varying graphs from online data.
It renders it model-independent, i.e., it can be theoretically analyzed in its abstract formulation.
We specialize the framework to three well-known graph learning models, namely, the Gaussian graphical model (GGM), the structural equation model (SEM), and the smoothness-based model (SBM)
arXiv Detail & Related papers (2021-10-21T09:46:44Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
We introduce a novel GP regression to incorporate the subgroup feedback.
Our modified regression has provably lower variance -- and thus a more accurate posterior -- compared to previous approaches.
We execute our algorithm on two disparate social problems.
arXiv Detail & Related papers (2021-07-07T03:57:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.