PGODE: Towards High-quality System Dynamics Modeling
- URL: http://arxiv.org/abs/2311.06554v2
- Date: Wed, 26 Jun 2024 23:37:46 GMT
- Title: PGODE: Towards High-quality System Dynamics Modeling
- Authors: Xiao Luo, Yiyang Gu, Huiyu Jiang, Hang Zhou, Jinsheng Huang, Wei Ju, Zhiping Xiao, Ming Zhang, Yizhou Sun,
- Abstract summary: This paper studies the problem of modeling multi-agent dynamical systems, where agents could interact mutually to influence their behaviors.
Recent research predominantly uses geometric graphs to depict these mutual interactions, which are then captured by graph neural networks (GNNs)
We propose a new approach named Prototypical Graph ODE to address the problem.
- Score: 40.76121531452706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies the problem of modeling multi-agent dynamical systems, where agents could interact mutually to influence their behaviors. Recent research predominantly uses geometric graphs to depict these mutual interactions, which are then captured by powerful graph neural networks (GNNs). However, predicting interacting dynamics in challenging scenarios such as out-of-distribution shift and complicated underlying rules remains unsolved. In this paper, we propose a new approach named Prototypical Graph ODE (PGODE) to address the problem. The core of PGODE is to incorporate prototype decomposition from contextual knowledge into a continuous graph ODE framework. Specifically, PGODE employs representation disentanglement and system parameters to extract both object-level and system-level contexts from historical trajectories, which allows us to explicitly model their independent influence and thus enhances the generalization capability under system changes. Then, we integrate these disentangled latent representations into a graph ODE model, which determines a combination of various interacting prototypes for enhanced model expressivity. The entire model is optimized using an end-to-end variational inference framework to maximize the likelihood. Extensive experiments in both in-distribution and out-of-distribution settings validate the superiority of PGODE compared to various baselines.
Related papers
- PRAGA: Prototype-aware Graph Adaptive Aggregation for Spatial Multi-modal Omics Analysis [1.1619559582563954]
We propose a novel spatial multi-modal omics resolved framework, termed PRototype-Aware Graph Adaptative Aggregation for Spatial Multi-modal Omics Analysis (PRAGA)
PRAGA constructs a dynamic graph to capture latent semantic relations and comprehensively integrate spatial information and feature semantics.
The learnable graph structure can also denoise perturbations by learning cross-modal knowledge.
arXiv Detail & Related papers (2024-09-19T12:53:29Z) - Causal Graph ODE: Continuous Treatment Effect Modeling in Multi-agent
Dynamical Systems [70.84976977950075]
Real-world multi-agent systems are often dynamic and continuous, where the agents co-evolve and undergo changes in their trajectories and interactions over time.
We propose a novel model that captures the continuous interaction among agents using a Graph Neural Network (GNN) as the ODE function.
The key innovation of our model is to learn time-dependent representations of treatments and incorporate them into the ODE function, enabling precise predictions of potential outcomes.
arXiv Detail & Related papers (2024-02-29T23:07:07Z) - Generalizing Graph ODE for Learning Complex System Dynamics across
Environments [33.63818978256567]
GG-ODE is a machine learning framework for learning continuous multi-agent system dynamics across environments.
Our model learns system dynamics using neural ordinary differential equations (ODE) parameterized by Graph Neural Networks (GNNs)
Experiments over various physical simulations show that our model can accurately predict system dynamics, especially in the long range.
arXiv Detail & Related papers (2023-07-10T00:29:25Z) - Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs [13.436770170612295]
We study for the first time uncertainty-aware modeling of continuous-time dynamics of interacting objects.
Our model infers both independent dynamics and their interactions with reliable uncertainty estimates.
arXiv Detail & Related papers (2022-05-24T08:36:25Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - A Deep Latent Space Model for Graph Representation Learning [10.914558012458425]
We propose a Deep Latent Space Model (DLSM) for directed graphs to incorporate the traditional latent variable based generative model into deep learning frameworks.
Our proposed model consists of a graph convolutional network (GCN) encoder and a decoder, which are layer-wise connected by a hierarchical variational auto-encoder architecture.
Experiments on real-world datasets show that the proposed model achieves the state-of-the-art performances on both link prediction and community detection tasks.
arXiv Detail & Related papers (2021-06-22T12:41:19Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
We study the intrinsic difficulty in graph classification under the unified concept of resolution dilemmas''
We propose SLIM'', an inductive neural network model for Structural Landmarking and Interaction Modelling.
arXiv Detail & Related papers (2020-06-29T01:01:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.