論文の概要: VisualVoice: Audio-Visual Speech Separation with Cross-Modal Consistency
- arxiv url: http://arxiv.org/abs/2101.03149v2
- Date: Tue, 6 Apr 2021 04:17:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 04:59:41.102850
- Title: VisualVoice: Audio-Visual Speech Separation with Cross-Modal Consistency
- Title(参考訳): VisualVoice: モーダルな整合性を持つオーディオ・ビジュアル音声分離
- Authors: Ruohan Gao and Kristen Grauman
- Abstract要約: ビデオでは、同時の背景音や他の人間のスピーカーにもかかわらず、顔に関連するスピーチを抽出することを目的としています。
本手法は,非ラベル映像から音声-視覚音声分離とクロスモーダル話者埋め込みを共同で学習する。
音声-視覚音声分離と強化のための5つのベンチマークデータセットで最新の結果が得られます。
- 参考スコア(独自算出の注目度): 111.55430893354769
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new approach for audio-visual speech separation. Given a
video, the goal is to extract the speech associated with a face in spite of
simultaneous background sounds and/or other human speakers. Whereas existing
methods focus on learning the alignment between the speaker's lip movements and
the sounds they generate, we propose to leverage the speaker's face appearance
as an additional prior to isolate the corresponding vocal qualities they are
likely to produce. Our approach jointly learns audio-visual speech separation
and cross-modal speaker embeddings from unlabeled video. It yields
state-of-the-art results on five benchmark datasets for audio-visual speech
separation and enhancement, and generalizes well to challenging real-world
videos of diverse scenarios. Our video results and code:
http://vision.cs.utexas.edu/projects/VisualVoice/.
- Abstract(参考訳): 音声と視覚の分離のための新しいアプローチを提案する。
ビデオが与えられたら、背景音や他の人間の話者が同時にいるにもかかわらず、顔に関連する音声を抽出する。
既存の手法では, 話者の唇の動きと発声音のアライメントの学習に重点を置いているが, 話者の顔の外観を付加的に活用し, 発声する可能性のある声質を分離することを提案する。
本手法は,非ラベル映像から音声-視覚音声分離とクロスモーダル話者埋め込みを共同で学習する。
音声と視覚の音声分離と強調のための5つのベンチマークデータセットに最先端の結果を与え、さまざまなシナリオの現実のビデオにうまく一般化する。
ビデオの結果とコード: http://vision.cs.utexas.edu/projects/VisualVoice/。
関連論文リスト
- Speech inpainting: Context-based speech synthesis guided by video [29.233167442719676]
本稿では,音声セグメントにおける音声合成の課題である音声-視覚音声の塗装問題に焦点をあてる。
本稿では,視覚的手がかりを生かし,劣化した音声の内容に関する情報を提供する音声-視覚変換器を用いた深層学習モデルを提案する。
また,音声認識のための大規模音声・視覚変換器であるAV-HuBERTで抽出した視覚的特徴が,音声合成にどのように適しているかを示す。
論文 参考訳(メタデータ) (2023-06-01T09:40:47Z) - Language-Guided Audio-Visual Source Separation via Trimodal Consistency [64.0580750128049]
この課題の鍵となる課題は、発音対象の言語的記述と、その視覚的特徴と、音声波形の対応する成分とを関連付けることである。
2つの新たな損失関数を通して擬似目標管理を行うために、既成の視覚言語基盤モデルを適用する。
3つの音声・視覚的分離データセットに対する自己教師型アプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-03-28T22:45:40Z) - LA-VocE: Low-SNR Audio-visual Speech Enhancement using Neural Vocoders [53.30016986953206]
雑音の多い音声・視覚音声からのメルスペクトルをトランスフォーマーベースアーキテクチャにより予測する2段階のアプローチであるLA-VocEを提案する。
我々は、何千もの話者と11以上の異なる言語でフレームワークを訓練し、評価し、異なるレベルのバックグラウンドノイズや音声干渉に適応するモデルの能力について研究する。
論文 参考訳(メタデータ) (2022-11-20T15:27:55Z) - Audio-Visual Speech Codecs: Rethinking Audio-Visual Speech Enhancement
by Re-Synthesis [67.73554826428762]
本稿では,AR/VRにおける高忠実度通信のための新しい音声・視覚音声強調フレームワークを提案する。
提案手法は音声・視覚音声の手がかりを利用してニューラル音声のコードを生成することで,ノイズ信号からクリーンでリアルな音声を効率的に合成する。
論文 参考訳(メタデータ) (2022-03-31T17:57:10Z) - One-shot Talking Face Generation from Single-speaker Audio-Visual
Correlation Learning [20.51814865676907]
特定の話者から一貫した音声スタイルを学ぶ方がずっと簡単で、それが本物の口の動きにつながる。
本研究では,特定の話者からの音声と視覚の動きの一致した相関関係を探索し,一対一の会話顔生成フレームワークを提案する。
学習した一貫した話し方のおかげで,本手法は真正な口の形状と鮮明な動きを生成する。
論文 参考訳(メタデータ) (2021-12-06T02:53:51Z) - Learning Speech Representations from Raw Audio by Joint Audiovisual
Self-Supervision [63.564385139097624]
生音声波形から自己教師付き音声表現を学習する手法を提案する。
音声のみの自己スーパービジョン(情報的音響属性の予測)と視覚的自己スーパービジョン(音声から発話顔を生成する)を組み合わせることで生音声エンコーダを訓練する。
本研究は,音声表現学習におけるマルチモーダル・セルフ・スーパービジョンの可能性を示すものである。
論文 参考訳(メタデータ) (2020-07-08T14:07:06Z) - FaceFilter: Audio-visual speech separation using still images [41.97445146257419]
本稿では,2つの話者の混在した話者の発話を,ディープ・オーディオ・ビジュアル・音声分離ネットワークを用いて分離することを目的とする。
ビデオクリップの唇の動きや事前登録された話者情報を補助的条件特徴として用いた従来の作品とは異なり、対象話者の単一顔画像を使用する。
論文 参考訳(メタデータ) (2020-05-14T15:42:31Z) - Visually Guided Self Supervised Learning of Speech Representations [62.23736312957182]
音声視覚音声の文脈における視覚的モダリティによって導かれる音声表現を学習するためのフレームワークを提案する。
音声クリップに対応する静止画像をアニメーション化し、音声セグメントの実際の映像にできるだけ近いよう、生成した映像を最適化する。
我々は,感情認識のための技術成果と,音声認識のための競争結果を達成する。
論文 参考訳(メタデータ) (2020-01-13T14:53:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。