論文の概要: Quantum Random Number Generation with Uncharacterized Laser and Sunlight
- arxiv url: http://arxiv.org/abs/2101.03460v1
- Date: Sun, 10 Jan 2021 03:00:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-17 04:46:45.594947
- Title: Quantum Random Number Generation with Uncharacterized Laser and Sunlight
- Title(参考訳): 非キャラクタリゼーションレーザーと太陽光による量子乱数生成
- Authors: Yu-Huai Li, Xuan Han, Yuan Cao, Xiao Yuan, Zheng-Ping Li, Jian-Yu
Guan, Juan Yin, Qiang Zhang, Xiongfeng Ma, Cheng-Zhi Peng, Jian-Wei Pan
- Abstract要約: 量子乱数生成器は通常、ランダム性を生成するためにレーザーのようなよくモデル化された校正された光源を必要とする。
日光や非文字化レーザーのような非文字化光源では、その未知構造や複雑な構造のため、真のランダム性は事実上定量化または抽出が困難である。
我々は、最近提案されたソース非依存のランダムネス生成プロトコルを活用し、非文字化レーザーと太陽光源による修正スキームを実験的に実現した。
- 参考スコア(独自算出の注目度): 9.909406849456033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The entropy or randomness source is an essential ingredient in random number
generation. Quantum random number generators generally require well modeled and
calibrated light sources, such as a laser, to generate randomness. With
uncharacterized light sources, such as sunlight or an uncharacterized laser,
genuine randomness is practically hard to be quantified or extracted owing to
its unknown or complicated structure. By exploiting a recently proposed
source-independent randomness generation protocol, we theoretically modify it
by considering practical issues and experimentally realize the modified scheme
with an uncharacterized laser and a sunlight source. The extracted randomness
is guaranteed to be secure independent of its source and the randomness
generation speed reaches 1 Mbps, three orders of magnitude higher than the
original realization. Our result signifies the power of quantum technology in
randomness generation and paves the way to high-speed semi-self-testing quantum
random number generators with practical light sources.
- Abstract(参考訳): エントロピーまたはランダムネス源は乱数生成に必須の要素である。
量子乱数生成器は通常、ランダム性を生成するためにレーザーのようなよくモデル化された校正された光源を必要とする。
日光や非キャラクタライズドレーザーのような非キャラクタライズド光源では、真のランダム性はその未知または複雑な構造のため、実質的に定量化や抽出が困難である。
近年提案されているソース非依存ランダムネス生成プロトコルを活用し,実用的課題を考慮し理論的に修正し,非キャラクタリゼーションレーザと太陽光源を用いた修正スキームを実験的に実現している。
抽出されたランダム性はそのソースから独立して確保されることが保証され、ランダム性生成速度は元の実現よりも3桁高い1mbpsに達する。
この結果は、ランダムネス生成における量子技術のパワーを示し、実用的な光源を持つ高速半自己テスト量子乱数発生器への道を開く。
関連論文リスト
- Quantum Random Number Generation with Partial Source Assumptions [26.983886835892363]
量子乱数生成器は、真の乱数を生成するために量子力学の力を利用する。
しかし、現実世界のデバイスは、しばしば、生成されたランダム性の完全性とプライバシーを損なう欠陥に悩まされる。
本稿では、新しい量子乱数生成器を提案し、それを実験的に実証する。
論文 参考訳(メタデータ) (2023-12-06T08:08:11Z) - Quantum Random Number Generator Based on LED [0.0]
量子乱数生成器(QRNG)は、量子力学の固有確率性に基づく乱数を生成する。
本稿では,LEDにおける自然発光と吸収のゆらぎに基づいて乱数を生成する組込みQRNGの設計と製造を行う。
この装置はNISTテストに合格し、生成速度は1Mbit/s、出力データのランダム性が不変である。
論文 参考訳(メタデータ) (2023-05-25T14:31:32Z) - Phase Randomness in a Semiconductor Laser: the Issue of Quantum Random
Number Generation [83.48996461770017]
本稿では、利得スイッチングレーザーにおける位相ランダム化の程度を推定するための理論的および実験的手法について述べる。
干渉信号は、干渉計に古典的な位相ドリフトが存在する場合でも、自然界において量子のままであることを示す。
論文 参考訳(メタデータ) (2022-09-20T14:07:39Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
おもちゃの光ファイバーをベースとしたセットアップを用いてバイナリシリーズを生成し、そのランダム度をVilleの原理に従って評価する。
標準統計指標の電池、ハースト、コルモゴロフ複雑性、最小エントロピー、埋め込みのTakensarity次元、および拡張ディッキー・フラーとクワイアトコフスキー・フィリップス・シュミット・シン(英語版)でテストされ、ステーション指数をチェックする。
Toeplitz 抽出器を不規則級数に適用することにより得られる系列のランダム性のレベルは、非還元原料のレベルと区別できない。
論文 参考訳(メタデータ) (2022-08-31T17:39:29Z) - Self-testing randomness from a nuclear spin system [0.9774183498779745]
本稿では,初めて核スピン系に基づく概念実証ランダム数生成器を提案する。
実験データにおけるランダム性のエントロピーは、2次元の証人認証プロトコルによって定量化される。
論文 参考訳(メタデータ) (2022-03-09T08:43:45Z) - Certified quantum random number generator based on single-photon
entanglement [0.0]
運動量偏光の絡み合った単一光子状態に基づく新しい量子乱数生成器を示す。
フォトニック量子乱数生成器の半デバイス非依存モデルを開発した。
提案手法は, 簡単な光学的実装と高精度なモデリングを組み合わせることで, 絡み合いに基づく高セキュリティな量子乱数生成器を提供することを示す。
論文 参考訳(メタデータ) (2021-04-09T16:01:25Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
量子乱数生成は、量子暗号と基本量子光学の鍵となる要素である。
自然発生過程に基づく量子乱数生成を実験的に実証する。
このスキームはコヒーレントな単一光子によってランダム数生成に拡張することができ、室温での固体ベースの量子通信にも応用できる。
論文 参考訳(メタデータ) (2021-02-18T14:07:20Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
本稿では, 量子回路に基づく生成モデルを構築し, 生成逆数ネットワークの事前分布を学習し, サンプル化する。
我々は、このハイブリッドアルゴリズムを171ドルのYb$+$ ion qubitsに基づいてイオントラップデバイスでトレーニングし、高品質な画像を生成する。
論文 参考訳(メタデータ) (2020-12-07T18:51:28Z) - Unpredictable and Uniform RNG based on time of arrival using InGaAs
Detectors [0.14337588659482517]
通信波長の弱いコヒーレント音源から高品質な量子乱数を生成した。
エントロピーは、予め定義された時間間隔内での量子状態の到来時刻に基づいている。
InGaAs単光子検出器による光子の検出と5psの高精度測定により、到着時間あたり16ビットのランダムな光子を生成することができる。
論文 参考訳(メタデータ) (2020-10-24T13:31:00Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
量子乱数生成(QRNG)は、量子力学現象の固有乱数性を利用する。
六方晶窒化ホウ素の量子エミッタによるQRNGの実証を行った。
本研究は,オンチップ決定性乱数生成器の製作への新たな道を開くものである。
論文 参考訳(メタデータ) (2020-01-28T22:47:43Z) - Using Randomness to decide among Locality, Realism and Ergodicity [91.3755431537592]
発見するために、または少なくとも指示を得るために実験が提案され、どれが偽であるかが示される。
このような実験の結果は、量子力学の基礎だけでなく、重要なものとなるだろう。
論文 参考訳(メタデータ) (2020-01-06T19:26:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。