論文の概要: Occupancy Detection in Room Using Sensor Data
- arxiv url: http://arxiv.org/abs/2101.03616v1
- Date: Sun, 10 Jan 2021 19:53:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-08 08:22:37.325095
- Title: Occupancy Detection in Room Using Sensor Data
- Title(参考訳): センサデータを用いた室内作業検出
- Authors: Mohammadhossein Toutiaee
- Abstract要約: 本稿では,複数の変数を用いてセンサデータを用いて占有率を検出するソリューションを提案する。
Decision Tree, Random Forest, Gradient Boosting Machine, Logistic Regression, Naive Bayes, Kernelized SVM, K-Nearest Neighborsの7つの有名なアルゴリズムがテストされ、比較されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advent of Internet of Thing (IoT), and ubiquitous data collected
every moment by either portable (smart phone) or fixed (sensor) devices, it is
important to gain insights and meaningful information from the sensor data in
context-aware computing environments. Many researches have been implemented by
scientists in different fields, to analyze such data for the purpose of
security, energy efficiency, building reliability and smart environments. One
study, that many researchers are interested in, is to utilize Machine Learning
techniques for occupancy detection where the aforementioned sensors gather
information about the environment. This paper provides a solution to detect
occupancy using sensor data by using and testing several variables.
Additionally we show the analysis performed over the gathered data using
Machine Learning and pattern recognition mechanisms is possible to determine
the occupancy of indoor environments. Seven famous algorithms in Machine
Learning, namely as Decision Tree, Random Forest, Gradient Boosting Machine,
Logistic Regression, Naive Bayes, Kernelized SVM and K-Nearest Neighbors are
tested and compared in this study.
- Abstract(参考訳): Internet of Thing(IoT)の出現と、ポータブル(スマートフォン)または固定(センサー)デバイスによって毎回収集されるユビキタスデータにより、コンテキスト対応コンピューティング環境でセンサデータから洞察と意味のある情報を得ることが重要である。
セキュリティ、エネルギー効率、信頼性の構築、スマート環境のために、さまざまな分野の科学者によって多くの研究が実施されている。
多くの研究者が興味を持っている研究は、前述のセンサーが環境に関する情報を収集する占有検知に機械学習技術を利用することである。
本稿では,複数の変数を用いてセンサデータを用いて占有率を検出する方法を提案する。
さらに,機械学習とパターン認識機構を用いて収集したデータを解析することにより,屋内環境の占有度を推定できることを示す。
機械学習における7つの有名なアルゴリズム、例えばDecision Tree、Random Forest、Gradient Boosting Machine、Logistic Regression、Naive Bayes、Kernelized SVM、K-Nearest Neighborsがテストされ、比較されている。
関連論文リスト
- SensorQA: A Question Answering Benchmark for Daily-Life Monitoring [1.925154869666529]
SensorQAは、日常生活監視のための長期時系列センサデータのための人為的な質問応答データセットである。
このデータセット上で、最先端AIモデルのベンチマークを確立し、典型的なエッジデバイス上でのパフォーマンスを評価する。
我々の結果は、現在のモデルと最適なQAパフォーマンスと効率のギャップを明らかにし、新しいコントリビューションの必要性を強調します。
論文 参考訳(メタデータ) (2025-01-09T05:06:44Z) - Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
本研究では,新しいデータセット,ベンチマーク,動的粗大な学習手法を提案する。
提案するデータセットであるAI-TOD-Rは、すべてのオブジェクト指向オブジェクト検出データセットの中で最小のオブジェクトサイズを特徴としている。
完全教師付きおよびラベル効率の両アプローチを含む,幅広い検出パラダイムにまたがるベンチマークを提案する。
論文 参考訳(メタデータ) (2024-12-16T09:14:32Z) - Learning 3D Perception from Others' Predictions [64.09115694891679]
本研究では,3次元物体検出装置を構築するための新たなシナリオについて検討する。
例えば、自動運転車が新しいエリアに入ると、その領域に最適化された検出器を持つ他の交通参加者から学ぶことができる。
論文 参考訳(メタデータ) (2024-10-03T16:31:28Z) - Federated Learning on Edge Sensing Devices: A Review [0.0]
プライバシ、ハードウェア、接続性の制限に対するソリューションとして、フェデレートラーニング(FL)が登場している。
FLの主要な原則、ソフトウェアフレームワーク、テストベッドに重点を置いています。
また,現在のセンサ技術,センサ装置の特性,FLを利用したセンサアプリケーションについても検討する。
論文 参考訳(メタデータ) (2023-11-02T12:55:26Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
センサーは、特に南極のような遠隔地において、その測定の情報量が最大になるように配置することは困難である。
確率論的機械学習モデルは、予測の不確実性を最大限に低減するサイトを見つけることによって、情報的センサ配置を提案することができる。
本稿では,これらの問題に対処するために,畳み込み型ガウスニューラルプロセス(ConvGNP)を提案する。
論文 参考訳(メタデータ) (2022-11-18T17:25:14Z) - Finding Facial Forgery Artifacts with Parts-Based Detectors [73.08584805913813]
顔の個々の部分に焦点を絞った一連の偽造検知システムを設計する。
これらの検出器を用いて、FaceForensics++、Celeb-DF、Facebook Deepfake Detection Challengeデータセットの詳細な実験分析を行う。
論文 参考訳(メタデータ) (2021-09-21T16:18:45Z) - Domain and Modality Gaps for LiDAR-based Person Detection on Mobile
Robots [91.01747068273666]
本稿では,移動ロボットのシナリオに着目した既存のLiDAR人物検出装置について検討する。
実験は3Dと2D LiDARのセンサー間のモダリティのギャップだけでなく、運転と移動ロボットのシナリオ間の領域ギャップを回避している。
その結果、LiDARに基づく人物検出の実践的な洞察を与え、関連する移動ロボットの設計と応用に関する情報決定を容易にする。
論文 参考訳(メタデータ) (2021-06-21T16:35:49Z) - On the Role of Sensor Fusion for Object Detection in Future Vehicular
Networks [25.838878314196375]
異なるセンサの組み合わせが車両の移動・運転環境の検出にどのように影響するかを評価します。
最終的な目標は、チャネルに分散するデータの量を最小限に抑える最適な設定を特定することです。
論文 参考訳(メタデータ) (2021-04-23T18:58:37Z) - Moving Object Classification with a Sub-6 GHz Massive MIMO Array using
Real Data [64.48836187884325]
無線信号を用いた屋内環境における各種活動の分類は,様々な応用の新たな技術である。
本論文では,屋内環境におけるマルチインプット・マルチアウトプット(MIMO)システムから,機械学習を用いて移動物体の分類を解析する。
論文 参考訳(メタデータ) (2021-02-09T15:48:35Z) - Self-Supervised Transformers for Activity Classification using Ambient
Sensors [3.1829446824051195]
本稿では,環境センサを用いた環境下での居住者の活動の分類手法を提案する。
また,自己教師付き方式でトランスフォーマーを事前訓練する手法を,ハイブリッドオートエンコーダ分類モデルとして提案する。
論文 参考訳(メタデータ) (2020-11-22T20:46:25Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
異常検出は、期待される振る舞いから著しく逸脱するデータパターンを特定することに関わる。
データ分析からe-health、サイバーセキュリティ、予測メンテナンス、障害防止、産業自動化に至るまで、幅広いアプリケーション領域があるため、これは重要な研究課題である。
本稿では,センサシステムの特定の領域における異常検出に使用される最先端手法について概説する。
論文 参考訳(メタデータ) (2020-10-27T09:56:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。