論文の概要: System Design for a Data-driven and Explainable Customer Sentiment
Monitor
- arxiv url: http://arxiv.org/abs/2101.04086v1
- Date: Mon, 11 Jan 2021 18:29:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-04 14:48:14.260638
- Title: System Design for a Data-driven and Explainable Customer Sentiment
Monitor
- Title(参考訳): データ駆動・説明可能な顧客感情モニタのためのシステム設計
- Authors: An Nguyen, Stefan Foerstel, Thomas Kittler, Andrey Kurzyukov, Leo
Schwinn, Dario Zanca, Tobias Hipp, Da Jun Sun, Michael Schrapp, Eva Rothgang,
Bjoern Eskofier
- Abstract要約: IoTとエンタープライズデータを組み合わせて顧客感情をモデル化するデータ駆動型意思決定支援システムのためのフレームワークを提示する。
このフレームワークは、主要な医療機器メーカーとの実際のケーススタディに適用される。
- 参考スコア(独自算出の注目度): 2.490457152391676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The most important goal of customer services is to keep the customer
satisfied. However, service resources are always limited and must be
prioritized. Therefore, it is important to identify customers who potentially
become unsatisfied and might lead to escalations. Today this prioritization of
customers is often done manually. Data science on IoT data (esp. log data) for
machine health monitoring, as well as analytics on enterprise data for customer
relationship management (CRM) have mainly been researched and applied
independently. In this paper, we present a framework for a data-driven decision
support system which combines IoT and enterprise data to model customer
sentiment. Such decision support systems can help to prioritize customers and
service resources to effectively troubleshoot problems or even avoid them. The
framework is applied in a real-world case study with a major medical device
manufacturer. This includes a fully automated and interpretable machine
learning pipeline designed to meet the requirements defined with domain experts
and end users. The overall framework is currently deployed, learns and
evaluates predictive models from terabytes of IoT and enterprise data to
actively monitor the customer sentiment for a fleet of thousands of high-end
medical devices. Furthermore, we provide an anonymized industrial benchmark
dataset for the research community.
- Abstract(参考訳): 顧客サービスの最も重要な目標は、顧客満足を維持することです。
しかしながら、サービスリソースは常に制限され、優先順位を付ける必要があります。
したがって、満足できなくなり、エスカレーションにつながる可能性のある顧客を特定することが重要である。
今日では、顧客の優先順位付けは手動で行うことが多い。
IoTデータに関するデータサイエンス(esp)。
ログデータ) マシンヘルスモニタリングや顧客関係管理(crm)のための企業データの分析は、主に独立して研究され、適用されてきた。
本稿では、IoTと企業データを組み合わせて顧客感情をモデル化するデータ駆動意思決定支援システムのフレームワークを提案する。
このような意思決定支援システムは、顧客やサービスリソースを優先し、問題を効果的にトラブルシュートしたり、回避したりするのに役立ちます。
このフレームワークは、主要な医療機器メーカーとの実際のケーススタディに適用される。
これには、完全に自動化され、解釈可能なマシンラーニングパイプラインが含まれており、ドメインの専門家やエンドユーザが定義した要件を満たすように設計されている。
フレームワークは現在、数千のハイエンド医療機器の顧客感情を積極的に監視するために、テラバイト単位のIoTおよびエンタープライズデータから予測モデルをデプロイ、学習、評価している。
さらに,研究コミュニティ向けに匿名化産業ベンチマークデータセットを提供する。
関連論文リスト
- CRMArena: Understanding the Capacity of LLM Agents to Perform Professional CRM Tasks in Realistic Environments [90.29937153770835]
CRMArenaは、プロフェッショナルな作業環境に根ざした現実的なタスクにおいて、AIエージェントを評価するために設計されたベンチマークである。
現状のLDMエージェントはReActプロンプトのタスクの40%以下で成功し,機能呼び出し能力でも55%以下であった。
この結果から,実環境に展開する関数呼び出しやルールフォローにおいて,エージェント機能の向上の必要性が示唆された。
論文 参考訳(メタデータ) (2024-11-04T17:30:51Z) - Which Client is Reliable?: A Reliable and Personalized Prompt-based Federated Learning for Medical Image Question Answering [51.26412822853409]
本稿では,医学的視覚的質問応答(VQA)モデルのための,パーソナライズド・フェデレーションド・ラーニング(pFL)手法を提案する。
提案手法では,学習可能なプロンプトをTransformerアーキテクチャに導入し,膨大な計算コストを伴わずに,多様な医療データセット上で効率的にトレーニングする。
論文 参考訳(メタデータ) (2024-10-23T00:31:17Z) - Privacy-Preserving Intrusion Detection using Convolutional Neural Networks [0.25163931116642785]
顧客のプライベートデータに対して分析サービスを提供するモデルオーナのユースケースについて検討する。
データに関する情報はアナリストに公開されず,モデルに関する情報は顧客にリークされない。
プライバシ保護技術を用いた畳み込みニューラルネットワークに基づく攻撃検知システムを構築した。
論文 参考訳(メタデータ) (2024-04-15T09:56:36Z) - An explainable machine learning-based approach for analyzing customers'
online data to identify the importance of product attributes [0.6437284704257459]
本稿では,製品開発におけるデザインの包括的意味を抽出するゲーム理論機械学習(ML)手法を提案する。
提案手法をKaggleの実際のラップトップのデータセットに適用し,結果に基づいて設計上の意味を導出する。
論文 参考訳(メタデータ) (2024-02-03T20:50:48Z) - Proactive Detractor Detection Framework Based on Message-Wise Sentiment
Analysis Over Customer Support Interactions [60.87845704495664]
本稿では、チャットベースのカスタマーサポートのインタラクションにのみ依存して、個々のユーザの推薦決定を予測するフレームワークを提案する。
ケーススタディでは、ラテンアメリカの大手電子商取引会社の金融分野における16.4kのユーザ数と48.7kの顧客サポートに関する会話を分析した。
以上の結果から,CS会話のメッセージワイドな感情進化のみに基づいて,ユーザが製品やサービスを推薦する可能性を予測することが可能であることが示唆された。
論文 参考訳(メタデータ) (2022-11-08T00:43:36Z) - The Future of Consumer Edge-AI Computing [58.445652425379855]
Deep Learningは、主にデバイス間のハードウェアアクセラレーションによって、消費者のエンドに急速に浸透している。
将来を見据えて、孤立したハードウェアが不十分であることは明らかです。
本稿では,コンシューマエッジにおける計算資源とデータアクセスの再編成と最適化を目的とした,EdgeAI-Hubデバイスを中心とした新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2022-10-19T12:41:47Z) - Distributed data analytics [8.415530878975751]
レコメンデーションシステムは、オンラインサービスプロバイダの重要なコンポーネントである。
金融業界は不正検出、リスク管理、コンプライアンスなどの分野で大量のデータを活用するためにMLを採用している。
論文 参考訳(メタデータ) (2022-03-26T14:10:51Z) - Augmenting Decision Making via Interactive What-If Analysis [4.920817773181235]
現在、ビジネスユーザーは長期にわたる探索分析を行う必要がある。
データセットの複雑さの増大と人間の認知的限界が組み合わさって、複数の仮説を乗り越えることが困難になる。
ここでは、ビジネスユーザがデータ属性の集合間の関係(機能)について対話的に学び、推論できるために必要な4つの機能について論じます。
論文 参考訳(メタデータ) (2021-09-13T17:54:30Z) - Federated Multi-Target Domain Adaptation [99.93375364579484]
フェデレートされた学習手法により、プライバシを保護しながら、分散ユーザデータ上で機械学習モデルをトレーニングすることが可能になります。
分散クライアントデータがラベル付けされず、集中型ラベル付きデータセットがサーバ上で利用可能となる、より実用的なシナリオを考えます。
本稿では,新しい課題に対処する効果的なDualAdapt法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:53:05Z) - Towards Compliant Data Management Systems for Healthcare ML [6.057289837472806]
我々は、ソースからストレージまで、ヘルスケアにおける機械学習プロジェクト内のデータフローがどのようにトレーニングアルゴリズムなどに使われるのかをレビューする。
私たちの目標は、プロジェクトのライフサイクル全体にわたって、マシンやユーザ間で機密データを検知し、追跡するツールを設計することにあります。
この領域の難しさを示すソリューションのプロトタイプを構築します。
論文 参考訳(メタデータ) (2020-11-15T15:27:51Z) - Unsupervised Model Personalization while Preserving Privacy and
Scalability: An Open Problem [55.21502268698577]
本研究では,非教師なしモデルパーソナライゼーションの課題について検討する。
この問題を探求するための新しいDual User-Adaptation Framework(DUA)を提供する。
このフレームワークは、サーバ上のモデルパーソナライズとユーザデバイス上のローカルデータ正規化に柔軟にユーザ適応を分散させる。
論文 参考訳(メタデータ) (2020-03-30T09:35:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。