Neural Re-Rendering of Humans from a Single Image
- URL: http://arxiv.org/abs/2101.04104v1
- Date: Mon, 11 Jan 2021 18:53:47 GMT
- Title: Neural Re-Rendering of Humans from a Single Image
- Authors: Kripasindhu Sarkar, Dushyant Mehta, Weipeng Xu, Vladislav Golyanik,
Christian Theobalt
- Abstract summary: We propose a new method for neural re-rendering of a human under a novel user-defined pose and viewpoint.
Our algorithm represents body pose and shape as a parametric mesh which can be reconstructed from a single image.
- Score: 80.53438609047896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human re-rendering from a single image is a starkly under-constrained
problem, and state-of-the-art algorithms often exhibit undesired artefacts,
such as over-smoothing, unrealistic distortions of the body parts and garments,
or implausible changes of the texture. To address these challenges, we propose
a new method for neural re-rendering of a human under a novel user-defined pose
and viewpoint, given one input image. Our algorithm represents body pose and
shape as a parametric mesh which can be reconstructed from a single image and
easily reposed. Instead of a colour-based UV texture map, our approach further
employs a learned high-dimensional UV feature map to encode appearance. This
rich implicit representation captures detailed appearance variation across
poses, viewpoints, person identities and clothing styles better than learned
colour texture maps. The body model with the rendered feature maps is fed
through a neural image-translation network that creates the final rendered
colour image. The above components are combined in an end-to-end-trained neural
network architecture that takes as input a source person image, and images of
the parametric body model in the source pose and desired target pose.
Experimental evaluation demonstrates that our approach produces higher quality
single image re-rendering results than existing methods.
Related papers
- HR Human: Modeling Human Avatars with Triangular Mesh and High-Resolution Textures from Videos [52.23323966700072]
We present a framework for acquiring human avatars that are attached with high-resolution physically-based material textures and mesh from monocular video.
Our method introduces a novel information fusion strategy to combine the information from the monocular video and synthesize virtual multi-view images.
Experiments show that our approach outperforms previous representations in terms of high fidelity, and this explicit result supports deployment on common triangulars.
arXiv Detail & Related papers (2024-05-18T11:49:09Z) - SiTH: Single-view Textured Human Reconstruction with Image-Conditioned Diffusion [35.73448283467723]
SiTH is a novel pipeline that integrates an image-conditioned diffusion model into a 3D mesh reconstruction workflow.
We employ a powerful generative diffusion model to hallucinate unseen back-view appearance based on the input images.
For the latter, we leverage skinned body meshes as guidance to recover full-body texture meshes from the input and back-view images.
arXiv Detail & Related papers (2023-11-27T14:22:07Z) - Refining 3D Human Texture Estimation from a Single Image [3.8761064607384195]
Estimating 3D human texture from a single image is essential in graphics and vision.
We propose a framework that adaptively samples the input by a deformable convolution where offsets are learned via a deep neural network.
arXiv Detail & Related papers (2023-03-06T19:53:50Z) - Neural Texture Extraction and Distribution for Controllable Person Image
Synthesis [46.570170624026595]
We deal with controllable person image synthesis task which aims to re-render a human from a reference image with explicit control over body pose and appearance.
Observing that person images are highly structured, we propose to generate desired images by extracting and distributing semantic entities of reference images.
arXiv Detail & Related papers (2022-04-13T03:51:07Z) - NeuralReshaper: Single-image Human-body Retouching with Deep Neural
Networks [50.40798258968408]
We present NeuralReshaper, a novel method for semantic reshaping of human bodies in single images using deep generative networks.
Our approach follows a fit-then-reshape pipeline, which first fits a parametric 3D human model to a source human image.
To deal with the lack-of-data problem that no paired data exist, we introduce a novel self-supervised strategy to train our network.
arXiv Detail & Related papers (2022-03-20T09:02:13Z) - EgoRenderer: Rendering Human Avatars from Egocentric Camera Images [87.96474006263692]
We present EgoRenderer, a system for rendering full-body neural avatars of a person captured by a wearable, egocentric fisheye camera.
Rendering full-body avatars from such egocentric images come with unique challenges due to the top-down view and large distortions.
We tackle these challenges by decomposing the rendering process into several steps, including texture synthesis, pose construction, and neural image translation.
arXiv Detail & Related papers (2021-11-24T18:33:02Z) - Creating and Reenacting Controllable 3D Humans with Differentiable
Rendering [3.079885946230076]
This paper proposes a new end-to-end neural rendering architecture to transfer appearance and reenact human actors.
Our method leverages a carefully designed graph convolutional network (GCN) to model the human body manifold structure.
By taking advantages of both different synthesisiable rendering and the 3D parametric model, our method is fully controllable.
arXiv Detail & Related papers (2021-10-22T12:40:09Z) - Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with
Conditional StyleGAN [88.62422914645066]
We present an algorithm for re-rendering a person from a single image under arbitrary poses.
Existing methods often have difficulties in hallucinating occluded contents photo-realistically while preserving the identity and fine details in the source image.
We show that our method compares favorably against the state-of-the-art algorithms in both quantitative evaluation and visual comparison.
arXiv Detail & Related papers (2021-09-13T17:59:33Z) - Neural Actor: Neural Free-view Synthesis of Human Actors with Pose
Control [80.79820002330457]
We propose a new method for high-quality synthesis of humans from arbitrary viewpoints and under arbitrary controllable poses.
Our method achieves better quality than the state-of-the-arts on playback as well as novel pose synthesis, and can even generalize well to new poses that starkly differ from the training poses.
arXiv Detail & Related papers (2021-06-03T17:40:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.